无机盐工业 ›› 2022, Vol. 54 ›› Issue (10): 87-95.doi: 10.19964/j.issn.1006-4990.2021-0619
收稿日期:
2021-10-18
出版日期:
2022-10-10
发布日期:
2022-11-03
作者简介:
王伟(1996— ),女,硕士研究生,主要研究方向为锂电池电极材料;E-mail:基金资助:
WANG Wei1,2(),LIU Wei1,2(
),WU Yang1,2,YANG Shenshen1
Received:
2021-10-18
Published:
2022-10-10
Online:
2022-11-03
摘要:
锂离子电池以其便携、无记忆效应、循环寿命长等特点广泛应用于移动电子设备、电动汽车等领域。负极材料的改进是制备新型高性能锂离子电池的重要环节。具有类石墨烯结构的二硫化钼是极具发展潜力的锂离子电池用负极材料。但纯二硫化钼导电性差、充放电过程中体积膨胀率高,导致其可逆容量低、容量保持率差。复合化与纳米化是解决上述问题的有效途径。综述了近年来用于锂离子电池负极材料的二硫化钼基复合材料研究进展,重点介绍了二硫化钼/碳和二硫化钼/过渡金属化合物体系的形貌特征、比容量、循环稳定性等,并对二硫化钼基负极材料的发展趋势进行了展望。
中图分类号:
王伟,刘伟,吴杨,杨慎慎. 锂离子电池二硫化钼基负极材料研究进展[J]. 无机盐工业, 2022, 54(10): 87-95.
WANG Wei,LIU Wei,WU Yang,YANG Shenshen. Research progress on molybdenum disulfide-based anode materials for lithium-ion batteries[J]. Inorganic Chemicals Industry, 2022, 54(10): 87-95.
表1
MoS2及典型MoS2基复合材料作为锂离子电池负极材料时的电化学性能数据
材料体系 | 形貌 | 层间距(hkl) | 合成方法 | 起始比容量(电流密度) | 循环稳定性 |
---|---|---|---|---|---|
MoS2[ | 纳米片 | 0.62 nm(002) | 加热-搅拌法 | 732 mA·h/g(0.1 A/g) | 循环100周后比容量小于200 mA·h/g |
MoS2/C[ | 类石墨烯 | 0.62 nm(002) | 水热法 | 962 mA·h/g(—) | 循环100周后比容量保持率为95% |
MoS2/C[ | 纳米球 | — | 水热法 | 1 307.8 mA·h/g (0.1 A/g) | 循环500周后比容量 为439 mA·h/g(1 A/g) |
C@MoS2@C[ | 纳米带 | 0.63 nm(002) | 水热-分解法 | 1 025.5 mA·h/g (0.2 A/g) | 循环100周后比容量保持率为99% |
MoS2/MBC[ | 纳米片 | 0.61 nm(003) | 水热法 | 1 867 mA·h/g(0.2 A/g) | 循环100周后比容量为672 mA·h/g |
CDs/MoS2[ | 泡沫状 | 0.96 nm(002) | 水热-碳化法 | 1 400 mA·h/g(0.1 A/g) | 循环100周后比容量为1 064 mA·h/g |
MoS2-CNT[ | 纳米管 | 0.83 nm(002) | CVD-水热法 | 1 400 mA·h/g(0.1 mA/cm2) | 循环100周后比容量为1 391 mA·h/g |
1T/2H-MoS2/CFC[ | 纳米片 | 0.82~0.91nm(002) | 水热法 | 1 546 mA·h/g (0.1A/g) | 循环120周后比容量保持率为94.1% |
MoS2/rGO[ | 中空微球 | 0.62 nm(002) | 水热法 | 760 mA·h/g(0.5 A/g) | 循环100周后比容量保持率为99.15% |
HC-MoS2@GF[ | 蜂巢状 | 0.64 nm(002) | 液相法-CVD | 1 110 mA·h/g(0.2 A/g) | 循环40周后比容量保持率为99% |
Sn/MoS2[ | 纳米花 | 0.62 nm(002) | 溶剂热法 | 1 000 mA·h/g(0.2 A/g) | 循环100周后比容量保持率接近100% |
Si@C@MoS2[ | 三明治结构 | 0.633 nm(002) | 溶胶凝胶-机械 搅拌-水热工艺 | 1 365.7 mA·h/g(0.5 A/g) | 循环500周后比容量保持率为81.5% |
MoS2/Mo2TiC2T x[ | 片状 | 0.69 nm | 液相混合 | 646 mA·h/g(0.1 A/g) | 循环500周后比容量保持率为86% |
MoS2-TiN[ | 条纹状 | — | 磁控溅射 | 700 mA·h/g(0.1 A/g) | 循环300周后比容量保持率为89% |
MoS2/TiO2[ | 微米花状 | — | 水热法 | 410.8 mA·h/g(0.8 A/g) | 循环300周后比容量保持率为88% |
Li3VO4/MoS2[ | 纳米片 | 0.268nm(101) | 溶剂热法 | 950 mA·h/g(0.1 A/g) | 循环100周后比容量为789.1 mA·h/g |
C@MoS2@TiO2[ | 纳米管 | — | 模板法-溶剂热法 | 455.2 mA·h/g(2 A/g) | 循环1 000周后比容量为455.2 mA·h/g |
SnO2@C@MoS2[ | 花瓣状 | 0.62 nm(002) | 水热法 | 1 500 mA·h/g(0.1 A/g) | 循环200周后比容量为1 082 mA·h/g |
Co9S8/MoS2@rGO[ | 中空纳米管 | 0.65 nm(002) | 模板法-自组装 | 1 140 mA·h/g(0.1 A/g) | 循环180周后比容量为807 mA·h/g |
[1] | WU Ling, ZHENG Jie, WANG Liang, et al.PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries[J].Angewandte Chemie (International Ed.in English), 2019, 58(3): 811-815. |
[2] | YAO Tianhao, WANG Hongkang, WANG Jinkai, et al.Metal-organic framework derived Ge/TiO2@C nanotablets as high-performance anode for lithium-ion batteries[J].ChemistrySelect, 2019, |
4(35): 10576-10580. | |
[3] | WANG Zuolu, FENG Guojin, ZHEN Dong, et al.A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles[J].Energy Reports, 2021, 7: 5141-5161. |
[4] |
HUANG Lujun, LI Tengfei, LIU Qinglei, et al.Fluorine-free Ti3C2T x as anode materials for Li-ion batteries[J].Electrochemistry Communications, 2019,104.Doi:10.1016/j.elecom.2019.05.021.
doi: 10.1016/j.elecom.2019.05.021 |
[5] | GUO X, XIE K, WANG Y, et al.Reduced graphene oxide-coated 3D interconnected SiO2 nanoparticles with enhanced lithium storage performance[J].International Journal of Electrochemical Science, 2018, 13(6): 5645-5653. |
[6] | CAO Bokai, LIU Ziqi, XU Chunyang, et al.High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries[J].Journal of Power So- urces, 2019, 414: 233-241. |
[7] | WANG Wenzhao, ZENG Xiangbin, WARNER J H, et al.Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structu-re[J].ACS Applied Materials & Interfaces, 2020, 12(29): 33325-33335. |
[8] |
LEI Zhendong, ZHAN Jing, TANG Liang, et al.Recent development of metallic(1T) phase of molybdenum disulfide for energy conversion and storage[J].Advanced Energy Materials, 2018, 8(19).Doi:10.1002/aenm.201703482 .
doi: 10.1002/aenm.201703482 |
[9] | NAVAS J, MARTÍNEZ-MERINO P, SÁNCHEZ-CORONILLA A, et al.MoS2 nanosheets vs.nanowires:Preparation and a theoretical study of highly stable and efficient nanofluids for concentrating solar power[J].Journal of Materials Chemistry A, 2018, 6(30): 14919-14929. |
[10] |
RADHAKRISHNAN S, RAJ K A S, KUMAR S R, et al.Energy storage performance of 2D MoS2 and carbon nanotube heterojunctions in symmetric and asymmetric configuration[J].Nanotechnology, 2021, 32(15).Doi:10.1088/1361-6528/abd05b .
doi: 10.1088/1361-6528/abd05b |
[11] | LI Yang, JIANG Song, QIAN Yong, et al.2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage[J].Nano Research, 2021, 14(4): 1061-1068. |
[12] | CHEN Runfeng, LIN Cheng, YU Huan, et al.Templating C60 on MoS2 nanosheets for 2D hybrid van der waals p-n nanoheterojunctions[J].Chemistry of Materials, 2016, 28(12): 4300-4306. |
[13] |
ZHAO Yangqiang, ZHANG Ziying, ZHANG Huizhen, et al.Three-dimensional PrGO-based sandwich composites with MoS2 flowers as stuffings for superior lithium storage[J].Frontiers in Chemistry, 2020,8.Doi:10.3389/fchem.2020.00094 .
doi: 10.3389/fchem.2020.00094 |
[14] | LOU Xiaoge, LIU Zhongliang, HOU Junxian, et al.Modification of the anodes using MoS2 nanoflowers for improving microbial fuel cells performance[J].Catalysis Today, 2021, 364: 111-117. |
[15] | LIU Yueru, HU Kunhong, HU Enzhu, et al.Double hollow MoS2 nano-spheres:Synthesis,tribological properties,and functional conversion from lubrication to photocatalysis[J].Applied Surface Science, 2017, 392: 1144-1152. |
[16] | CHANG Kun, CHEN Weixiang, MA Lin, et al.Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J].Journal of Materials Chemistry, 2011, 21(17): 6251-6257. |
[17] | 艾经伟, 杨尊先, 郭太良.分级结构的碳/二硫化钼纳米带的制备及其锂电性能研究[J].真空科学与技术学报, 2018, 38(2): 132-139. |
AI Jingwei, YANG Zunxian, GUO Tailiang.Synthesis and Li-ion storage properties of hierarchical C-coated MoS2 nanobelts[J].Chinese Journal of Vacuum Science and Technology, 2018, 38(2): 132-139. | |
[18] |
XU Yonghang, ZHANG Congcong, KUANG Shaojie, et al.Facile synthesis and electrochemical performances of activated bamboo charcoal supported MoS2 nanoflakes as anodes materials for lithium-ion batteries[J].Journal of Electroanalytical Chemistry, 2019,847.Doi:10.1016/j.jelechem.2019.113265 .
doi: 10.1016/j.jelechem.2019.113265 |
[19] | WU Junxiong, CIUCCI F, KIM J K.Molybdenum disulfide based nanomaterials for rechargeable batteries[J].Chemistry(Weinheim an Der Bergstrasse,Germany), 2020, 26(29): 6296-6319. |
[20] | LEI Zhendong, YU Xue, ZHANG Yong, et al.Thermally stable fishnet-like 1T-MoS2/CNT heterostructures with improved electrode performance[J].Journal of Materials Chemistry A, 2021, 9(8): 4707-4715. |
[21] | XUE Haoliang, JIAO Qingze, DU Jinyu, et al.Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries[J].Ionics, 2019, 25(10): 4659-4666. |
[22] | LONG Fei, CHEN Yi, WU Caihong, et al.Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries[J].Ionics, 2021, 27(5): 1977-1986. |
[23] | WANG Jin, LIU Jilei, CHAO Dongliang, et al.Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage[J].Advanced Materi- als(Deerfield Beach,Fla.), 2014, 26(42): 7162-7169. |
[24] |
ZHANG Wenlan, ZHENG Maojun, LI Fanggang, et al.SnO x /graphene anode material with multiple oxidation states for high-performance Li-ion batteries[J].Nanotechnology, 2021, 32(19).Doi:10.1088/1361-6528/abe2c9 .
doi: 10.1088/1361-6528/abe2c9 |
[25] | LU Lin, MIN Feixia, LUO Zhaohui, et al.Synthesis and electrochemical properties of tin-doped MoS2(Sn/MoS2) composites for lithium ion battery applications[J].Journal of Nanoparticle Research, 2016, 18(12): 1-12. |
[26] |
ZHAO Qian, ZHU Qizhen, MIAO Jiawei, et al.Lithium-ion batteries:Flexible 3D porous MXene foam for high-performance lithi-um-ion batteries(small 51/2019)[J]. Small, 2019, 15(51).Doi:10.1002/smll.201970276 .
doi: 10.1002/smll.201970276 |
[27] | 齐新, 陈翔, 彭思侃, 等. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J].材料工程, 2019, 47(12): 10-20. |
QI Xin, CHEN Xiang, PENG Sikan, et al.Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries[J].Journal of Materials Engineering, 2019, 47(12): 10-20. | |
[28] | CHEN Chi, XIE Xiuqiang, ANASORI B, et al.MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries[J].Angewandte Chemie(International Ed.in English), 2018, 57(7): 1846-1850. |
[29] | MOON S H, KIM S J, KIM M C, et al.MoS2-TiN nanostructured electrodes fabricated using co-sputtering deposition method for high-performance lithium-ion batteries[J].Journal of Alloys and Compounds, 2018, 741: 1048-1054. |
[30] | CHENG Hui, SHAPTER J G, LI Yongying, et al.Recent progress of advanced anode materials of lithium-ion batteries[J].Journal of Energy Chemistry, 2021, 57: 451-468. |
[31] |
FAN Yicheng, CHEN Xuhui, ZHANG Kun, et al.A coordinated regulation strategy to improve electronic conductivity and Li-ion transport for TiO2 lithium battery anode materials[J].Journal of Alloys and Compounds, 2021,860.Doi:10.1016/j.jallcom.2020.158282 .
doi: 10.1016/j.jallcom.2020.158282 |
[32] | CHEN Biao, MENG Yuhuan, SHA Junwei, et al.Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechar-geable batteries:Progress,challenges,and perspective[J].Nanoscale, 2017, 10(1): 34-68. |
[33] | ZHANG Yingjie, ZHAO Shaobo, ZENG Xiaoyuan, et al.TiO2–MoS2 hybrid nano composites with 3D network architecture as binder-free flexible electrodes for lithium ion batteries[J].Journal of Materials Science:Materials in Electronics, 2017, 28(13): 9519-9527. |
[34] | ZHOU Yu, LIU Yong, ZHAO Wenxia, et al.Growth of vertically aligned MoS2 nanosheets on a Ti substrate through a self-supported bonding interface for high-performance lithium-ion batteries:A general approach[J].Journal of Materials Chemistry A, 2016, 4(16): 5932-5941. |
[35] | PHAM-CONG D, CHOI J H, YUN J, et al.Synergistically enhanced electrochemical performance of hierarchical MoS2/TiNb2O7 hetero-nanostructures as anode materials for Li-ion batteries[J].ACS Nano, 2017, 11(1): 1026-1033. |
[36] | ZHANG Mengqi, BAI Xue, LIU Yangyang, et al.Solvothermal processed Li3VO4/MoS2 composites and its enhanced electrochemical performance as lithium battery anode materials[J].Applied Surface Science, 2019, 469: 923-932. |
[37] | LI Junfeng, HAN Lu, ZHANG Xinlu, et al.Multi-role TiO2 layer coated carbon@few-layered MoS2 nanotubes for durable lithium storage[J].Chemical Engineering Journal, 2021,406.Doi:10.1016/j.cej2020.126873. |
[38] |
ZHANG Peng, LIU Yang, ZHOU Min, et al.Rationally designed C/Co9S8@SnS2 nanocomposite as a highly efficient anode for lithium-ion batteries[J].Nanotechnology, 2020, 31(39).Doi:10.1088/1361-6528/ab9a72 .
doi: 10.1088/1361-6528/ab9a72 |
[39] | 刘瑜琳.MoS2纳米材料制备及其电化学性能研究[D].哈尔滨:哈尔滨工业大学, 2018. |
LIU Yulin.Preparation of MoS2 nanomaterials and study on their electrochemical properties[D].Harbin:Harbin Institute of Technology, 2018. | |
[40] |
FOLEY S, GEANEY H, BREE G, et al.Copper sulfide(Cu x S) nanowire-in-carbon composites formed from direct sulfurization of the metal-organic framework HKUST-1 and their use as Li-ion battery cathodes[J].Advanced Functional Materials, 2018, 28(19).Doi:10.1002/adfm.201800587 .
doi: 10.1002/adfm.201800587 |
[41] | LIU Yayuan, GENG Hongbo, ANG E H, et al.Hierarchical nanotubes constructed by Co9S8/MoS2 ultrathin nanosheets wrapped with reduced graphene oxide for advanced lithium storage[J].Chemistry,an Asian Journal, 2019, 14(1): 170-176. |
[42] | CHOI J H, KIM M C, MOON S H, et al.Enhanced electrochemical performance of MoS2/graphene nanosheet nanocomposites[J].RSC Advances, 2020, 10(32): 19077-19082. |
[43] |
LIU Hongdong, LIN Ye, ZHANG Lei.Hierarchical porous MoS2/C nanospheres self-assembled by nanosheets with high electrochemical energy storage performance[J].Nanoscale Research Letters, 2020, 15(1).Doi:10.1186/s11671-020-03427-5 .
doi: 10.1186/s11671-020-03427-5 |
[44] | MA Beibei, CHEN Shuijiao, HUANG Yewei, et al.Electrochemical lithium storage performance of three-dimensional foam-like biocarbon/MoS2 composites[J].Transactions of Nonferrous Metals Society of China, 2021, 31(1): 255-264. |
[45] | LIN Xiaoping, XUE Dongyang, ZHAO Longze, et al.In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles:A three-dimensional heterostructure for high-performance flexible lithium-ion batteries[J].Chemical Engineering Journal, 2019, 356: 483-491. |
[46] | ZHANG Xinlin, HUANG Liwu, ZENG Pan, et al.Hierarchical MoS2 anchored on core-shell Si@C with increased active-sites and charge transfer for superior cycling and rate capability in lithium-ion batteries[J].Chemical Engineering Journal, 2019, 357: 625-632. |
[47] |
MAO Peiyuan, WANG Yong, GUO Wenbin, et al.Morphology-controlled synthesis and lithium storage properties of SnO2@C@MoS2 hollow nanospheres with petaloid and granular MoS2 nanosheets as the external layer in different solvents[J].Journal of Alloys and Compounds, 2021,850.Doi:10.1016/j.jallcom.2020.156745 .
doi: 10.1016/j.jallcom.2020.156745 |
[48] | PARK J, JOO S H, KIM Y J, et al.Organic semiconductor cocrystal for highly conductive lithium host electrode[J].Advanced Functional Materials, 2019, 29(32).Doi:10.1002/adfm.201902888.(上接第45页) |
[49] | LI Jun, GAO Shiyang, XIA Shuping, et al.Thermochemistry of hydrated magnesium borates[J].The Journal of Chemical Thermodynamics, 1997, 29(4): 491-497. |
[50] | CHEN Shangqing, WANG Mengxue, HU Jiayin, et al.Phase equilibria in the aqueous ternary systems(NaCl+NaBO2+H2O) and (Na2SO4+NaBO2+H2O) at 298.15 K and 0.1 MPa[J].Journal of Chemical and Engineering Data(the ACS Journal for Data), 2018, 63(12): 4662-4668. |
[51] |
CUI Wanjing, HOU Hongfang, HU Jiayin, et al.Phase equilibria and phase diagrams for the aqueous ternary system containing sodium,chloride,and metaborate ions at 288.15 and 308.15 K and 0.1 MPa[J].Journal of Chemistry, 2019.Doi:10.1155/2019/ 1983051 .
doi: 10.1155/2019/ 1983051 |
[52] |
YANG Lan, LI Dan, ZHANG Tao, et al.Thermodynamic phase equilibria in the aqueous ternary system NaCl-NaBO2-H2O:Experimental data and solubility calculation using the Pitzer mo-del[J].The Journal of Chemical Thermodynamics, 2020,142.Doi:10.1016/j.jct.2019.106021 .
doi: 10.1016/j.jct.2019.106021 |
[53] | BU Baihui, LI Long, ZHANG Nan, et al.Solid-liquid metastable phase equilibria for the ternary system(Li2SO4+K2SO4+H2O) at 288.15 and 323.15 K,p=0.1 MPa[J].Fluid Phase Equilibria, 2015, 402: 78-82. |
[54] | WANG Shiqiang, YANG Juan, SHI Chuncheng, et al.Solubilities,densities,and refractive indices in the ternary systems(LiBO2+NaBO2+H2O) and(LiBO2+KBO2+H2O) at 298.15 K and 0.1 MPa[J].Journal of Chemical & Engineering Data, 2019, 64(7): 3122-3127. |
[55] | 中国科学院青海盐湖研究所分析室.卤水和盐的分析方法[M].2版.北京:科学出版社, 1988. |
[56] | 杨琴, 李君, 李恒欣, 等. 三元体系Na2B4O7-NaHCO3-H2O和Na2CO3-NaBO2-H2O等温溶解度研究[J].盐湖研究, 2001, 9(4): 24-29. |
YANG Qin, LI Jun, LI Hengxin, et al.Study on the isothermal solubility for the ternary system Na2B4O7-NaHCO3-H2O and Na2CO3-NaBO2-H2O[J].Journal of Salt Lake Research, 2001, 9(4): 24-29. |
[1] | 周旋, 李梦锐, 陈一尘, 樊辉强, 王宾, 袁刚. 镍基磷化物复合材料在催化电解水析氢性能提升方面的研究进展[J]. 无机盐工业, 2024, 56(4): 8-15. |
[2] | 周海涛, 温承钦, 郑玲, 孙洁. 金属锂电池负极界面氮化硼修饰膜的研究[J]. 无机盐工业, 2024, 56(4): 85-89. |
[3] | 李亚广, 韩东战, 齐利娟. 废旧锂离子电池预处理及电解液回收技术研究现状[J]. 无机盐工业, 2024, 56(2): 1-10. |
[4] | 陈天东, 赵光钊, 海春喜, 董生德, 贺欣, 许琪, 冯航, 袁少雄, 马路祥, 周园. 包覆与掺杂对富锂锰基材料的改性研究及产业化进展[J]. 无机盐工业, 2023, 55(9): 1-8. |
[5] | 冯准. B/Al/Zr协同策略改善高镍单晶正极材料高温稳定性[J]. 无机盐工业, 2023, 55(8): 59-64. |
[6] | 于惠, 王榆彬, 廖折军, 杨云广. 废旧三元锂离子动力电池循环再生利用工艺概述[J]. 无机盐工业, 2023, 55(7): 32-37. |
[7] | 李志强, 郭正华, 何玉汝. Zr/Mn元素替代及退火处理对汽车电池用储氢合金电化学性能的影响[J]. 无机盐工业, 2023, 55(6): 78-84. |
[8] | 朱志红, 朱永芳. 硅掺杂锰酸锂的自蔓延燃烧制备及其性能研究[J]. 无机盐工业, 2023, 55(5): 66-70. |
[9] | 郜飞, 董良飞, 葛玉龙, 唐园园, 李芬. 污泥生物炭/凹凸棒土的制备及其吸附性能研究[J]. 无机盐工业, 2023, 55(5): 91-99. |
[10] | 兰蓥华, 陈艳梅, 马瑞霄, 张燕辉. 铈钛氧化物-凹凸棒土的制备及其光催化性能[J]. 无机盐工业, 2023, 55(4): 133-140. |
[11] | 田朋, 徐金钢, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 纳米氧化铝浆料制备及用于改性锂电池正极材料[J]. 无机盐工业, 2023, 55(12): 43-49. |
[12] | 张瑞, 王正豪, 陈良, 郭孝东, 罗冬梅. 工业钛液合成钛酸钠负极及其储钠性能[J]. 无机盐工业, 2023, 55(12): 66-73. |
[13] | 屈恋, 李越珠, 李铭雅, 王昭沛, 陈燕玉, 李意能. 磷化铁对磷酸铁锂电化学性能的影响探究[J]. 无机盐工业, 2023, 55(12): 88-94. |
[14] | 袁子鸥, 王峰, 祁星朝, 张琦, 马剑龙, 唐忠锋. 氯化钠-硫酸钠/硅基相变材料的热物性研究[J]. 无机盐工业, 2023, 55(10): 114-120. |
[15] | 周敏. PANI/TIO复合材料的制备及其在 聚氨酯涂料中的应用[J]. 无机盐工业, 2023, 55(1): 112-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|