无机盐工业 ›› 2024, Vol. 56 ›› Issue (7): 28-36.doi: 10.19964/j.issn.1006-4990.2023-0461
苏宝才1,2(), 张勤2, 谢元健1, 蔡平雄1(
), 潘远凤2
收稿日期:
2023-09-21
出版日期:
2024-07-10
发布日期:
2024-08-01
通讯作者:
蔡平雄(1970— ),男,博士,教授级高级工程师,研究方向为无机化工;E-mail:pingxiongcai@bbgu.edu.cn。作者简介:
苏宝才(1999— ),男,在读硕士研究生,研究方向为化工材料;E-mail:1366770971@qq.com。
基金资助:
SU Baocai1,2(), ZHANG Qin2, XIE Yuanjian1, CAI Pingxiong1(
), PAN Yuanfeng2
Received:
2023-09-21
Published:
2024-07-10
Online:
2024-08-01
摘要:
锂离子电池因具有比能量高、循环使用寿命长、无记忆效应等特点而备受关注,并已广泛应用于日常生活中。在已有的锂离子电池正极材料中,磷酸铁锰锂正极材料具有能量密度高、放电比容量大、电压平台高等优点,是一种具有前景的锂离子电池正极材料,然而由于其低导电率和离子迁移速率慢等问题,一直制约着其发展。通过分析磷酸铁锰锂不同铁锰比例、颗粒尺寸及形貌对电化学性能的影响,指出铁锰物质的量比为0.5∶0.5的小粒径多孔球状颗粒对提高电化学性能有积极的影响;并介绍了采用Mg、Ti、Ni等离子掺杂或表面包覆改性方法对其进行优化,材料的性能会得到改善;最后对磷酸铁锰锂的发展趋势提出了一些建议,指出对合成工艺的改进和开展更深入的理论研究仍是今后的研究重点。
中图分类号:
苏宝才, 张勤, 谢元健, 蔡平雄, 潘远凤. 磷酸铁锰锂材料的合成方法及结构改性的研究进展[J]. 无机盐工业, 2024, 56(7): 28-36.
SU Baocai, ZHANG Qin, XIE Yuanjian, CAI Pingxiong, PAN Yuanfeng. Advances in synthesis methods and structural modification of LiMnFePO4 materials[J]. Inorganic Chemicals Industry, 2024, 56(7): 28-36.
表2
不同铁锰比的材料形貌与性能对比
铁含量 x | 材料形貌 | 初始放电容量/ (mA·h·g-1) (倍率) | 倍率容量/ (mA·h·g-1) (倍率) | 循环容量/(mA·h·g-1)(倍率,循环 次数) |
---|---|---|---|---|
x=0[ | 纳米片状 | 109.5(0.05C) | 45.0(5C) | 28.9 (5C,100次) |
x=0.2[ | 2~10 μm 的球状 | 159.0(0.1C) | 148.0(1C) 138.0(5C) 130.0(10C) | 141.0 (1C,500次) 127.0 (5C,500次) |
x=0.3[ | 宽度为40~50 nm、长度为120~ 160 nm的棒状 | 167.4(0.1C) 153.9(1C) | 139.1(5C) | 146.0 (1C,100次) 122.3 (5C,100次) |
x=0.4[ | 1~5 μm的 团聚颗粒 | 159.7(0.05C) 147.7(1C) | 139.4(2C) 118.7(10C) 104.0(20C) | 134.4 (2C,200次) |
x=0.5[ | 50~200 nm的 不规则颗粒 | 149.5(0.1C) | 139.5(0.2C) 123.0(0.5C) 110.0(1C) | 138.7 (0.2C,50次) 117.3 (0.5C,150次) 102.6 (1C,300次) |
x=0.8[ | 200~400 nm 的板状颗粒 | 160.0(0.1C) | 90.0(5C) | — |
x=0.9[ | 100~200 nm 的多孔微球 | 155.5(0.1C) | 122.9(2C) | 122.9 (2C,100次) |
x=1[ | 类球状颗粒 | 157.0(0.1C) | 144.0(1C) 119.0(5C) 102.0(10C) | 156.0 (0.1C,50次) 143.0 (1C,50次) 97.0 (10C,50次) |
表3
不同形貌MLTP材料的电化学性能比较
材料 | 形貌 | 初始放电容量/ (mA·h·g-1) (倍率) | 倍率容量/ (mA·h·g-1) (倍率) | 循环容量/(mA·h·g-1)(倍率,循环次数) |
---|---|---|---|---|
MLTP-EG6 | 大尺寸颗粒 小尺寸晶体 | 139.5(0.1C) 130.6(0.5C) 117.2(1C) | 83.0(5C) 60.1(10C) 38.7(20C) | 105.0(0.5C,100次) |
MLTP-EG9 | 中等尺寸颗粒 中等尺寸晶体 | 144.7(0.5C) | — | 130.2(0.5C,100次) |
MLTP-EG12 | 小尺寸颗粒 大尺寸晶体 | 163.2(0.1C) 158.0(0.5C) 153.3(1C) | 137.6(5C) 123.4(10C) 101.6(20C) | 150.7(0.5C,100次) |
1 | 张克宇,姚耀春.锂离子电池磷酸铁锂正极材料的研究进展[J].化工进展,2015,34(1):166-172. |
ZHANG Keyu, YAO Yaochun.Research progress in LiFePO4 cathode material for lithium⁃ion batteries[J].Chemical Industry and Engineering Progress,2015,34(1):166-172. | |
2 | 姜华伟,刘亚飞,陈彦彬,等.锂离子电池三元正极材料研究及应用进展[J].人工晶体学报,2018,47(10):2205-2211. |
JIANG Huawei, LIU Yafei, CHEN Yanbin,et al.Research progress on the ternary layered oxide cathode materials of lithium ion battery[J].Journal of Synthetic Crystals,2018,47(10):2205-2211. | |
3 | 陈喜,杨春利,黄江龙,等.高电压钴酸锂正极材料研究进展[J].材料导报,2023,37(13):39-52. |
CHEN Xi, YANG Chunli, HUANG Jianglong,et al.Research progress of high voltage lithium cobalt oxide cathode materials[J].Materials Reports,2023,37(13):39-52. | |
4 | 陈孟,陈朝轶,李军旗,等.锂离子电池镍锰酸锂正极材料研究进展[J].电子元件与材料,2021,40(9):833-839,865. |
CHEN Meng, CHEN Chaoyi, LI Junqi,et al.Research progress of lithium nickel manganese oxide cathode material for lithium⁃ion batteries[J].Electronic Components and Materials,2021,40(9):833-839,865. | |
5 | 王泽晶,吴建栋,沙思淼,等.高镍三元正极材料LiNi0.82Co0.15Mn0.03O2的制备及电化学性能研究[J].电源技术,2022,46(8):854-858. |
WANG Zejing, WU Jiandong, SHA Simiao,et al.Preparation and electrochemical properties of high nickel ternary cathode material LiNi0.82Co0.15Mn0.03O2 [J].Chinese Journal of Power Sources,2022,46(8):854-858. | |
6 | 张婷,林森,于建国.磷酸铁锂正极材料的制备及性能强化研究进展[J].无机盐工业,2021,53(6):31-40. |
ZHANG Ting, LIN Sen, YU Jianguo.Research progress in synthesis and performance enhancement of LiFePO4 cathode materi⁃als[J].Inorganic Chemicals Industry,2021,53(6):31-40. | |
7 | 李涛.两类锂电池争“王座”[N].中华工商时报,2021-08- 06(6). |
8 | 高美玲.磷酸铁锰锂正极材料研究[D].天津:天津师范大学,2022. |
GAO Meiling.Study on lithium iron manganese phosphate cathode material[D].Tianjin:Tianjin Normal University,2022. | |
9 | 安立伟.磷酸铁锰锂材料的制备与性能研究[D].天津:河北工业大学,2019. |
AN Liwei.Preparation and properties of lithiumiron manganese phosphate cathode materials[D].Tianjin:Hebei University of Tech⁃nology,2019. | |
10 | SONG M K, PARK S, ALAMGIR F M,et al.Nanostructured electrodes for lithium⁃ion and lithium⁃air batteries:The latest developments,challenges,and perspectives[J].Materials Science and Engineering R:Reports,2011,72(11):203-252. |
11 | 黄勇平.高性能磷酸铁锰锂正极材料的制备及其性能研 究[D].北京:钢铁研究总院,2015. |
HUANG Yongping.Preparation and properties of high⁃performance lithium iron manganese phosphate cathode materials[D].Beijing:Central Iron and Steel Research Institute,2015. | |
12 | YAMADA A, KUDO Y, LIU Kuangyu.Reaction mechanism of the olivine⁃type Li x (Mn0.6Fe0.4)PO4(0≤x≤1)[J].Journal of the Electrochemical Society,2001,148(7):A747. |
13 | MI Yingying, YANG Chengkai, ZUO Zicheng,et al.Positive effect of minor manganese doping on the electrochemical performance of LiFePO4/C under extreme conditions[J].Electrochimica Acta,2015,176:642-648. |
14 | MELIGRANA G, DI LUPO F, FERRARI S,et al.Surfactant⁃assisted mild hydrothermal synthesis to nanostructured mixed orthophosphates LiMn y Fe1- y PO4/C lithium insertion cathode materials[J].Electrochimica Acta,2013,105:99-109. |
15 | LIAO Longhuan, WANG Hongtao, GUO Hui,et al.Facile solvothermal synthesis of ultrathin LiFe x Mn1- x PO4 nanoplates as advanced cathodes with long cycle life and superior rate capabili⁃ty[J].Journal of Materials Chemistry A,2015,3(38):19368-19375. |
16 | 吴星宇,阮丁山,毛林林,等.溶剂热法制备Mn掺杂LiFePO4正极材料及其电化学性能[J].无机化学学报,2021,37(8):1399-1406. |
WU Xingyu, RUAN Dingshan, MAO Linlin,et al.Mn-doped LiFePO4 cathode material:Solvothermal preparation and electrochemical performance[J].Chinese Journal of Inorganic Chemistry,2021,37(8):1399-1406. | |
17 | YI Tingfeng, PENG Panpan, FANG Zikui,et al.Carbon⁃coated LiMn1- x Fe x PO4(0≤x≤0.5) nanocomposites as high⁃performance cathode materials for Li-ion battery[J].Composites Part B:Engineering,2019,175:107067. |
18 | PENG Zhongdong, ZHANG Baichao, HU Guorong,et al.Green and efficient synthesis of micro⁃nano LiMn0.8Fe0.2PO4/C composite with high⁃rate performance for Li-ion battery[J].Electrochimica Acta,2021,387:138456. |
19 | LEI Zhihong, NAVEED A, LEI Jingyu,et al.High performance nano⁃sized LiMn1- x Fe x PO4 cathode materials for advanced lithium⁃ion batteries[J].RSC Advances,2017,7(69):43708-43715. |
20 | WU Kaipeng, YIN Shan, WANG Shen,et al.Construction of submicron⁃sized LiFe0.4Mn0.6PO4/C enwrapped into graphene framework for advanced Li-storage[J].Carbon,2020,169:55-64. |
21 | YANG Yi, CHEN Xianglong, GU Yixun,et al.The effect of using nano⁃bubble water as a solvent on the properties of lithium iron manganese phosphate prepared by solvothermal method[J].Materials Letters,2021,299:130053. |
22 | HUYNH L T N, LE P P N, TRINH V D,et al.Structure and electrochemical behavior of minor Mn-doped olivine LiMnxFe1- x PO4[J].Journal of Chemistry,2019,2019:5638590. |
23 | CHEN Zewei, WANG Weigang, DUAN Jianguo,et al.Highly efficient synthesis of nano LiMn0.90Fe0.10PO4/C composite via mechanochemical activation assisted calcination[J].Ceramics International,2023,49(11):18483-18490. |
24 | LI Xuetian, SHAO Zhongbao, LIU Kuiren,et al.Influence of Li∶Fe molar ratio on the performance of the LiFePO4/C prepared by high temperature ball milling method[J].Journal of Electroanalytical Chemistry,2017,801:368-372. |
25 | DENG Yuanfu, YANG Chunxiang, ZOU Kaixiang,et al.Recent advances of Mn-rich LiFe1- y Mn y PO4(0.5≤y<1.0) cathode materials for high energy density lithium ion batteries[J].Advanced Energy Materials,2017,7(13):1601958. |
26 | WANG Yan, YU Faquan.Probing the morphology dependence,size preference and electron/ion conductance of manganese⁃based lithium transition⁃metal phosphate as cathode materials for high⁃performance lithium⁃ion battery[J].Journal of Alloys and Compounds,2021,850:156773. |
27 | ZHANG Xiang, HOU Mengyan, TAMIRATE A G,et al.Carbon coated nano⁃sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries[J].Journal of Power Sources,2020,448:227438. |
28 | LI Yahui, JIANG Weiwei, DING Guoyu,et al.Hierarchically porous LiMn0.1Fe0.9PO4@C microspherical cathode materials prepared by a facile template⁃free hydrothermal method for high⁃performance lithium⁃ion batteries[J].Journal of Alloys and Compounds,2021,859:157825. |
29 | LEI Zhihong, WANG Jiulin, YANG Jun,et al.Nano⁃/microhierarchical⁃structured LiMn0.85Fe0.15PO4 cathode material for advan⁃ced lithium ion battery[J].ACS Applied Materials & Interfaces,2018,10(50):43552-43560. |
30 | LI Yilin, XU Zhaohui, ZHANG Xinyu,et al.Tuning the electrochemical behaviors of N-doped LiMn x Fe1- x PO4/C via cation engineering with metal⁃organic framework⁃templated strategy[J].Journal of Energy Chemistry,2023,85:239-253. |
31 | KIM J K, HWANG G C, KIM S H,et al.Comparison of the structural and electrochemical properties of LiMn0.4Fe0.6PO4 cathode materials with different synthetic routes[J].Journal of Industrial and Engineering Chemistry,2018,66:94-99. |
32 | OH S M, OH S W, YOON C S,et al.High⁃performance carbon⁃LiMnPO4 nanocomposite cathode for lithium batteries[J].Advanced Functional Materials,2010,20(19):3260-3265. |
33 | KIM J K, SHIN C R, AHN J H,et al.Highly porous LiMnPO4 in combination with an ionic liquid⁃based polymer gel electrolyte for lithium batteries[J].Electrochemistry Communications,2011,13(10):1105-1108. |
34 | AHMAD WANI T, SURESH G.A comprehensive review of LiMnPO 4 based cathode materials for lithium⁃ion batteries:Current strategies to improve its performance[J].Journal of Energy Storage,2021,44:103307. |
35 | XIAO Peng, CAI Yuanyuan, CHEN Xueping,et al.Improved electrochemical performance of LiFe0.4Mn0.6PO4/C with Cr3+ doping[J].RSC Advances,2017,7(50):31558-31566. |
36 | YING Jierong, LEI Min, JIANG Changyin,et al.Preparation and characterization of high⁃density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries[J].Journal of Power Sources,2006,158(1):543-549. |
37 | WU T, LIU J, SUN L,et al.V-insertion in Li(Fe,Mn)FePO4 [J].Journal of Power Sources,2018,383:133-143. |
38 | CLEMENS O, BAUER M, HABERKORN R,et al.Synthesis and characterization of vanadium⁃doped LiMnPO4-compounds:LiMn(PO 4) x (VO4)1- x (0.8≤x≤1.0)[J].Chemistry of Materials,2012,24(24):4717-4724. |
39 | GUO Hongyuan, LIU Ruoxuan, LI Weida,et al.Site selection of niobium⁃doped LiMn0.6Fe0.4PO4 and effect on electrochemical properties[J].Journal of the Electrochemical Society,2023, 170(3):030542. |
40 | HUANG Qiaoying, WU Zhi, SU Jing,et al.Synthesis and electrochemical performance of Ti-Fe co⁃doped LiMnPO4/C as cathode material for lithium⁃ion batteries[J].Ceramics International,2016,42(9):11348-11354. |
41 | TIAN Shiyu, ZHANG Kaicheng, CAO Jingrui,et al.Spherical Ni-doped LiMn0.6Fe0.4PO4/C composites with high⁃rate performan⁃ ce[J].Ionics,2021,27(7):2877-2887. |
42 | HU Hui, LI Heng, LEI Yu,et al.Mg-doped LiMn0.8Fe0.2PO4/C nano⁃plate as a high⁃performance cathode material for lithium⁃ion batteries[J].Journal of Energy Storage,2023,73:109006. |
43 | CHUNG S Y, BLOKING J T, CHIANG Y M.Electronically conductive phosphoolivines as lithium storage electrodes[J].Nature Materials,2002,1:123-128. |
44 | GAO Libin, XU Zhengrui, ZHANG Shu.The co⁃doping effects of Zr and Co on structure and electrochemical properties of LiFePO4 cathode materials[J].Journal of Alloys and Compounds,2018,739:529-535. |
45 | 冯晓晗,孙杰,何健豪,等.磷酸铁锂正极材料改性研究进 展[J].储能科学与技术,2022,11(2):467-486. |
FENG Xiaohan, SUN Jie, HE Jianhao,et al.Research progress in LiFePO4 cathode material modification[J].Energy Storage Science and Technology,2022,11(2):467-486. | |
46 | CHEN Tian, HAN Shichang, XU Jing,et al.Design of ultrathin carbon⁃wrapped lithium vanadium phosphate nanoparticles as cathodes for high⁃performance lithium⁃ion batteries[J].International Journal of Electrochemical Science,2023,18(6):100151. |
47 | CHEN Zhaoyong, ZHU Huali, JI Shan,et al.Influence of carbon sources on electrochemical performances of LiFePO4/C composites[J].Solid State Ionics,2008,179(27/28/29/30/31/32):1810-1815. |
48 | ITURRONDOBEITIA A, GOÑI A, GIL DE MURO I,et al.High⁃voltage cathode materials for lithium⁃ion batteries:Freeze⁃dried LiMn0.8Fe0.1M0.1PO4/C(M=Fe,Co,Ni,Cu) nanocomposites[J].Inorganic Chemistry,2015,54(6):2671-2678. |
49 | WANG Ke, CAI Rui, YUAN Tao,et al.Process investigation,electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source[J].Electrochimica Acta,2009,54(10):2861-2868. |
50 | XIE Xiaoming, ZHANG Baichao, HU Guorong,et al.A new route for green synthesis of LiFe0.25Mn0.75PO4/C@rGO material for lithium ion batteries[J].Journal of Alloys and Compounds,2021,853:157106. |
51 | CHI Zixiang, ZHANG Wei, CHENG Fuquan,et al.Optimizing the carbon coating on LiFePO4 for improved battery performan⁃ ce[J].RSC Advances,2014,4(15):7795-7798. |
52 | YANG Xinhe, MI Yingying, ZHANG Weidong,et al.Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene⁃assisted calcination process[J].Journal of Power Sources,2015,275:823-830. |
53 | LIU Hongyu, REN Li, LI Jiashen,et al.Iron⁃assisted carbon coating strategy for improved electrochemical LiMn0.8Fe0.2PO4 cathodes[J].Electrochimica Acta,2016,212:800-807. |
54 | FAN Runzhen, FAN Changling, HU Zhuang,et al.Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium⁃ion batteries[J].Journal of Alloys and Compounds,2021,876:160090. |
55 | YAN Xiao, SUN Deye, WANG Yanqing,et al.Enhanced electrochemical performance of LiMn0.75Fe0.25PO4 nanoplates from multiple interface modification by using fluorine⁃doped carbon coating[J].ACS Sustainable Chemistry & Engineering,2017,5(6):4637-4644. |
56 | IARCHUK A R, NIKITINA V A, KARPUSHKIN E A,et al.Influence of carbon coating on intercalation kinetics and transport properties of LiFePO4 [J].ChemElectroChem,2019,6(19):5090-5100. |
57 | YI Dawei, CUI Xumei, LI Nali,et al.Enhancement of electrochemical performance of LiFePO4@C by Ga coating[J].ACS Omega,2020,5(17):9752-9758. |
58 | CUI Xumei, YI Dawei, LI Nali,et al.Novel LaFeO3 coating modification for a LiFePO4 cathode[J].Energy & Fuels,2020,34(6):7600-7606. |
[1] | 李子罕, 张佳琦, 李世卓, 李欣雨, 刘少卓, 王一豪, 郝玉翠, 刘剑, 李彦华. CdS/g-C3N4复合光催化剂的合成及催化机理研究[J]. 无机盐工业, 2025, 57(3): 124-132. |
[2] | 杨福, 解玉龙. 三元材料LiNi0.65Co0.15Mn0.2O2的制备及Na+掺杂改性研究[J]. 无机盐工业, 2025, 57(3): 43-49. |
[3] | 宋佳禧, 计任飞, 陈君, 林森, 于建国. 深度失活三元正极材料特性分析及预处理研究[J]. 无机盐工业, 2025, 57(2): 44-49. |
[4] | 马骏, 金央, 李军, 陈明, 王玉滨. 盘管式流量逆变微反应器中光化学合成H2O2的研究[J]. 无机盐工业, 2025, 57(2): 50-56. |
[5] | 柳黄飞, 张莉, 刘涛. 分子筛快速合成技术研究进展[J]. 无机盐工业, 2025, 57(2): 36-43. |
[6] | 张岩岩, 李东红, 刘永鹤, 张阳, 康乐, 王毅. 填料氧化铝的表面处理研究[J]. 无机盐工业, 2025, 57(1): 77-82. |
[7] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
[8] | 陈雪, 欧阳全胜, 邵姣婧. 基于固-固反应机制锂硫电池的最新研究进展[J]. 无机盐工业, 2024, 56(9): 12-23. |
[9] | 李雪连, 唐梓涵, 许杰, 李雄. 硫酸钙晶须/SBS复合改性沥青性能研究[J]. 无机盐工业, 2024, 56(9): 82-89. |
[10] | 宋国良, 穆展鹏, 杨霞霞, 李子涵, 朱金剑, 张景成, 杨文汝, 马文琪. 镁改性对Ni-Mo/Al2O3体系催化剂烯烃选择性能的影响[J]. 无机盐工业, 2024, 56(7): 150-156. |
[11] | 王君婷, 马航, 查坐统, 万邦隆, 张振环. 磷酸铁工业废水处理工艺研究进展[J]. 无机盐工业, 2024, 56(6): 26-33. |
[12] | 刘慧, 王洪亮, 余琨, 高胜男. 煅烧对空气电极的多孔结构和电化学性能的影响[J]. 无机盐工业, 2024, 56(6): 80-86. |
[13] | 胡成, 刘梦, 向玮衡, 段鹏选, 李顺凯, 明阳, 王能, 卢冠举. NaCl溶液浓度对磷石膏制备α-半水石膏转晶行为的影响[J]. 无机盐工业, 2024, 56(6): 87-93. |
[14] | 屠艳平, 白登显, 程书凯, 谢俊杰, 黄志良, 陈国夫. 矿粉和生石灰高温改性对磷石膏水泥基材料性能影响[J]. 无机盐工业, 2024, 56(6): 94-101. |
[15] | 杨恩, 申红艳, 刘有智. 硅聚醚原位改性超细氢氧化镁的制备[J]. 无机盐工业, 2024, 56(4): 42-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|