无机盐工业 ›› 2024, Vol. 56 ›› Issue (11): 15-29.doi: 10.19964/j.issn.1006-4990.2024-0077
收稿日期:
2024-02-23
出版日期:
2024-11-10
发布日期:
2024-04-02
通讯作者:
范壮军,男,博士,合肥综合性国家科学中心研究员,博士生导师,获国家万人计划领军人才,科技部科技创新领军人才,龙江学者特聘教授,泰山学者特聘教授等荣誉称号;E-mail:fanzhj666@163.com。作者简介:
万峰(1998— ),硕士,研究方向为全固态锂电池正极材料;E-mail:1140445117@qq.com。
基金资助:
WAN Feng(), YAN Yingchun, FAN Zhuangjun(
)
Received:
2024-02-23
Published:
2024-11-10
Online:
2024-04-02
摘要:
全固态锂金属电池具有安全性能好、能量密度高等优势,被认为是下一代高性能高安全储能电池技术的发展方向。开发先进的固态电解质是实现全固态锂电池发展的关键,卤化物固态电解质具有高室温离子电导率、宽电化学窗口及良好的正极界面稳定性等优势,受到了相关学者的广泛关注。概述了卤化物固态电解质的分类、制备方法及离子传输机制,较为深入地阐述了其湿度稳定性及界面稳定性问题,归纳了目前所采用的解决策略及在全固态锂金属电池中实际的应用,并提出了卤化物固态电解质现阶段面临的挑战和未来发展方向,这将有助于推动卤化物固态电解质的进一步发展。
中图分类号:
万峰, 闫迎春, 范壮军. 卤化物固态电解质研究进展与展望[J]. 无机盐工业, 2024, 56(11): 15-29.
WAN Feng, YAN Yingchun, FAN Zhuangjun. Research progress and prospect of halide solid electrolytes[J]. Inorganic Chemicals Industry, 2024, 56(11): 15-29.
图5
循环过程中LiCoO2-Li3InCl6|Li3InCl6|In电池的阻抗变化(a)[14]、Li3InCl6、LiCoO2-Li3InCl6复合正极、循环后LiCoO2-Li3InCl6复合正极的X射线光电子能谱和X射线近边吸收光谱(b)[14]、在LiCoO2上原位合成Li3InCl6(LIC@LCO)的示意图(c)[82]、Li3N、Li2O、LiF、LiAlO2、Li3PO4和LiAlF4理论计算电化学稳定窗口,原子层沉积法在NMC-811颗粒表面合成LiAlF4薄膜示意图(d)[16]、SSE和LiCoO2之间的计算反应焓作为混合比的函数,以及在能量最低点对应的相平衡(e)[28]、卤化物固态电解质-层状氧化物正极界面副反应示意图(f)[83]和NCM811-Li3InCl6复合正极在70 ℃下不同时间的电化学阻抗谱(g)[83]
1 | 余洪文,胡社军,侯贤华,等.锂离子电池正极材料LiFePO4的改性研究[J].材料导报,2008,22(S1):235-237. |
2 | TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359- 367. |
3 | LEE Yonggun, FUJIKI S, JUNG C,et al.High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J].Nature Energy,2020,5:299-308. |
4 | MANTHIRAM A, YU Xingwen, WANG Shaofei.Lithium battery chemistries enabled by solid-state electrolytes[J].Nature Reviews Materials,2017,2(4):16103. |
5 | HAN Xiaogang, GONG Yunhui, FU K K,et al.Negating interfacial impedance in garnet-based solid-state Li metal batteries[J].Nature Materials,2017,16(5):572-579. |
6 | WANG Chengwei, FU Kun, KAMMAMPATA S P,et al.Garnet-type solid-state electrolytes:Materials,interfaces,and batteries[J].Chemical Reviews,2020,120(10):4257-4300. |
7 | 李泓,许晓雄.固态锂电池研发愿景和策略[J].储能科学与技术,2016,5(5):607-614. |
LI Hong, XU Xiaoxiong.R & D vision and strategies on solid lithium batteries[J].Energy Storage Science and Technology,2016,5(5):607-614. | |
8 | PANG Weikong, LIN H F, PETERSON V K,et al.Effects of fluorine and chromium doping on the performance of lithium-rich Li1+ x MO2(M=Ni,Mn,Co) positive electrodes[J].Chemistry of Materials,2017,29(24):10299-10311. |
9 | LIAO Peng, LI Jing, DAHN J R.Lithium intercalation in LiFe2F6 and LiMgFeF6 disordered trirutile-type phases[J].Journal of the Electrochemical Society,2010,157(3):A355. |
10 | RONGEAT C, REDDY M A, WITTER R,et al.Solid electrolytes for fluoride ion batteries:Ionic conductivity in polycrystalline tysonite-type fluorides[J].ACS Applied Materials & Interfaces,2014,6(3):2103-2110. |
11 | LIESER G, DRÄGER C, SCHROEDER M,et al.Sol-gel based synthesis of LiNiFeF6 and its electrochemical characterization[J].Journal of the Electrochemical Society,2014,161(6):A1071-A1077. |
12 | 周伟东,黄秋,谢晓新,等.固态锂电池聚合物电解质研究进展[J].储能科学与技术,2022,11(6):1788-1805. |
13 | MA Tenghuan, WANG Zhixuan, WU Dengxu,et al.High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology[J].Energy & Environmental Science,2023,16(5):2142-2152. |
14 | LI Xiaona, LIANG Jianwen, LUO Jing,et al.Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J].Energy & Environmental Science,2019,12(9):2665-2671. |
15 | WANG Qingtao, MA Xuefang, LIU Qian,et al.Fluorine-doped Li3InCl6 to enhance ionic conductivity and air stability[J].Journal of Alloys and Compounds,2023,969:172479. |
16 | XIE Jin, SENDEK A D, CUBUK E D,et al.Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling[J].ACS Nano,2017,11(7):7019-7027. |
17 | YIN Yichen, YANG Jingtian, LUO Jinda,et al.A LaCl3-based lithium superionic conductor compatible with lithium metal[J].Nature,2023,616(7955):77-83. |
18 | ZHANG Shumin, ZHAO Feipeng, CHEN Jiatang,et al.A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J].Nature Communications,2023,14(1):3780. |
19 | FU Jiamin, WANG Shuo, LIANG Jianwen,et al.Superionic conducting halide frameworks enabled by interface-bonded hali-des[J].Journal of the American Chemical Society,2023,145(4):2183-2194. |
20 | BACHMAN J C,MUY S, GRIMAUD A,et al.Inorganic solid-state electrolytes for lithium batteries:Mechanisms and properties governing ion conduction[J].Chemical Reviews,2016, 116(1):140-162. |
21 | CHEN Minhua, EMLY A, ANTON V D V.Anharmonicity and phase stability of antiperovskite Li3OCl[J].Physical Review B,2015,91,214306. |
22 | EMLY A, KIOUPAKIS E, VAN DER VEN A.Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J].Chemistry of Materials,2013,25(23):4663-4670. |
23 | LI Xiaona, LIANG Jianwen, YANG Xiaofei,et al.Progress and perspectives on halide lithium conductors for all-solid-state lithi-um batteries[J].Energy & Environmental Science,2020,13(5):1429-1461. |
24 | CARL F, BIRK L, GRAUEL B,et al.LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals[J].Nano Research,2021,14(3):797-806. |
25 | TYAGI A K, KÖHLER J, BALOG P,et al.Syntheses and structures of Li3ScF6 and high pressure LiScF4 -,luminescence properties of LiScF4,a new phase in the system LiF-ScF3 [J].Journal of Solid State Chemistry,2005,178(9):2620-2625. |
26 | ASANO T, SAKAI A, OUCHI S,et al.Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J].Advanced Materials,2018,30(44):e1803075. |
27 | SCHLEM R,MUY S, PRINZ N,et al.Mechanochemical synthesis:A tool to tune cation site disorder and ionic transport properties of Li3MCl6(M=Y,Er) superionic conductors[J].Advanced Energy Materials,2020,10(6):1903719. |
28 | LIANG Jianwen, LI Xiaona, WANG Shuo,et al.Site-occupation-tuned superionic Li x ScCl3+ x halide solid electrolytes for all-solid-state batteries[J].Journal of the American Chemical Society,2020,142(15):7012-7022. |
29 | WEPPNER W, HUGGINS R A.Ionic conductivity of solid and liquid LiAlCl4 [J].Journal of the Electrochemical Society,1977,124(1):35-38. |
30 | LIU Jiahui, WANG Shuo, YU QIE,et al.Identifying lithium fluorides for promising solid-state electrolyte and coating material of high-voltage cathode[J].Materials Today Energy,2021,21:100719. |
31 | HU Jiulin, YAO Zhenguo, CHEN Keyi,et al.High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries[J].Energy Storage Materials,2020,28:37-46. |
32 | ZEVGOLIS A, WOOD B C, MEHMEDOVIĆ Z,et al.Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries[J].APL Materials,2018,6(4):047903. |
33 | TOMITA Y, YAMADA K, OHKI H,et al.Structure and dynamics of Li3InBr6 and NaInBr4 by means of nuclear magnetic resonan-ce[J].Zeitschrift Für Naturforschung A,1998,53(6/7):466-472. |
34 | ADELSTEIN N, WOOD B C.Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte[J].Chemistry of Materials,2016,28(20):7218-7231. |
35 | YAMADA K, KUMANO K, OKUDA T.Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li,115In NMR[J].Solid State Ionics,2006,177(19/20/21/22/23/24/25):1691-1695. |
36 | STEINER H J, LUTZ H D.Neue schnelle ionenleiter vom typ MMIIICl6(MI=Li,Na,Ag;MIII=In,Y)[J].Zeitschrift Für Anorganische und Allgemeine Chemie,1992,613(7):26-30. |
37 | SCHMIDT M O, WICKLEDER M S, MEYER G.Ternary halides of the A3MX6 type.Ⅷ On the crystal structure of Li3InCl6 [J].Zeit-schrift für anorganische und allgemeine Chemie,1999,625(4):539-540. |
38 | KANNO R, TAKEDA Y, YAMAMOTO O.Ionic conductivity of solid lithium ion conductors with the spinel structure:Li2MCl4 (M=Mg,Mn,Fe,Cd)[J].Materials Research Bulletin,1981, 16(8):999-1005. |
39 | VAN LOON C J J, VISSER D.Chlorides with the chrysoberyl structure:Na2CoCl4 and Na2ZnCl4 [J].Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry,1977, 33(1):188-190. |
40 | SOLINAS I, LUTZ H D.Nonceramic preparation techniques for ternary halides AB2X4 with A=Mg,Mn,Zn;B=Li,Na;X=Cl,Br[J].Journal of Solid State Chemistry,1995,117(1):34-38. |
41 | PARTIK M, LUTZ H D.Lithium vanadium chlorides-phase transition,crystal structure of the mixed valence compound Li1.3V1.2Cl4 [J].Materials Research Bulletin,1997,32(8):1073-1078. |
42 | LUTZ H D, KUSKE P, WUSSOW K.Ionic motion of tetrahedrally and octahedrally coordinated lithium ions in ternary and quaternary halides[J].Solid State Ionics,1988,28:1282-1286. |
43 | KANNO R, TAKEDA Y, TAKAHASHI A,et al.Structure,ionic conductivity,and phase transformation in new polymorphs of the double chloride spinel,Li2FeCl4 [J].Journal of Solid State Chemistry,1988,72(2):363-375. |
44 | KAJIYAMA A, TAKADA K, INADA T,et al.Electrochemical deintercalation of lithium ions from lithium iron chloride spi- nel[J].Solid State Ionics,2002,152:295-302. |
45 | TANIBATA N, TAKIMOTO S, AIZU S,et al.Applying the HSAB design principle to the 3.5 V-class all-solid-state Li-ion batteries with a chloride electrolyte[J].Journal of Materials Chemistry A,2022,10(39):20756-20760. |
46 | LUTZ H D, PFITZNER A, SCHMIDT W,et al.Mößbauer-untersuchung der modifikationen von Li2FeCl4 [J].Zeitschrift Für Na- turforschung A,1989,44(8):756-758. |
47 | WANG Kai, REN Qingyong, GU Zhenqi,et al.A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J].Nature Communications,2021,12(1):4410. |
48 | FU Jiamin, WANG Shuo, WU Duojie,et al.Halide heterogeneous structure boosting ionic diffusion and high-voltage stability of sodium superionic conductors[J].Advanced Materials,2024,36(3):2308012. |
49 | ZHOU Laidong, KWOK C Y, SHYAMSUNDER A,et al.A new halospinel superionic conductor for high-voltage all solid state li-thium batteries[J].Energy & Environmental Science,2020,13(7):2056-2063. |
50 | JUNG S K, GWON H, YOON G,et al.Pliable lithium superionic conductor for all-solid-state batteries[J].ACS Energy Letters,2021,6(5):2006-2015. |
51 | LIANG Jianwen, VAN DER MAAS E, LUO Jing,et al.A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries[J].Advanced Energy Materials,2022,12(21):2103921. |
52 | PARK K H, KAUP K, ASSOUD A,et al.High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J].ACS Energy Letters,2020,5(2):533-539. |
53 | LIU Zhantao, MA Shuan, LIU Jue,et al.High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary[J].ACS Energy Letters,2021,6(1):298-304. |
54 | WANG Kai, GU Zhenqi, XI Zhiwei,et al.Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J].Nature Communications,2023,14(1):1396. |
55 | SCHLEM R, BANIK A, OHNO S,et al.Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6 [J].Chemistry of Materials,2021,33(1):327-337. |
56 | ZHOU Laidong, ASSOUD A, SHYAMSUNDER A,et al.An entropically stabilized fast-ion conductor:Li3.25[Si0.25P0.75]S4 [J].Chemistry of Materials,2019,31(19):7801-7811. |
57 | LI Xiaona, LIANG Jianwen, CHEN Ning,et al.Water-mediated synthesis of a superionic halide solid electrolyte[J].Angewandte Chemie,2019,58(46):16427-16432. |
58 | WANG Changhong, LIANG Jianwen, LUO Jing,et al.A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J].Science Advances,2021,7(37):eabh1896. |
59 | OI T.Ionic conductivity of amorphous mLiFnMF3 thin films(M=Al,Cr,Sc or Al+Sc)[J].Materials Research Bulletin,1984, 19(10):1343-1348. |
60 | Kaiyong TUO, SUN Chunwen, LIU Shuqin.Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J].Electrochemical Energy Reviews,2023,6(1):17. |
61 | WANG Shuhao, XU Xiaowei, CUI Can,et al.Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure[J].Advanced Functional Materials,2022,32(7):2108805. |
62 | LUO Xuming, ZHONG Yu, WANG Xiuli,et al.Degradation evolution for Li2ZrCl6 electrolytes in humid air and enhancedair stability via effective indium substitution[J].Small,2023:e2306736. |
63 | LI Xiaona, LIANG Jianwen, ADAIR K R,et al.Origin of superionic Li3Y1- x In x Cl6 halide solid electrolytes with high humidity tolerance[J].Nano Letters,2020,20(6):4384-4392. |
64 | WANG Kai, GU Zhenqi, LIU Haoxuan,et al.High-humidity-tolerant chloride solid-state electrolyte for all-solid-state lithium batteries[J].Advanced Science,2024,11(14):2305394. |
65 | BANERJEE A, WANG Xuefeng, FANG Chengcheng,et al.Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J].Chemical Reviews,2020,120(14):6878-6933. |
66 | WANG Shuo, BAI Qiang, NOLAN A M,et al.Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J].Angewandte Chemie,2019,58(24):8039-8043. |
67 | ZHU Yizhou, HE Xingfeng, MO Yifei.Origin of outstanding stability in the lithium solid electrolyte materials:Insights from thermodynamic analyses based on first-principles calculations[J].ACS Applied Materials & Interfaces,2015,7(42):23685-23693. |
68 | RICHARDS W D, MIARA L J, WANG Yan,et al.Interface stability in solid-state batteries[J].Chemistry of Materials,2016, 28(1):266-273. |
69 | WENZEL S, LEICHTWEISS T, KRÜGER D,et al.Interphase formation on lithium solid electrolytes:An in situ approach to study interfacial reactions by photoelectron spectroscopy[J].Solid St- ate Ionics,2015,278:98-105. |
70 | KRAFT M A, CULVER S P, CALDERON M,et al.Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X(X=Cl,Br,I)[J].Journal of the American Chemical Society,2017,139(31):10909-10918. |
71 | CONNELL J G, FUCHS T, HARTMANN H,et al.Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J].Chemistry of Materials,2020,32(23):10207-10215. |
72 | RIEGGER L M, SCHLEM R, SANN J,et al.Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J].Angewandte Chemie,2021,60(12):6718-6723. |
73 | FU Yuanyuan, MA Cheng.Interplay between Li3YX6(X=Cl or Br) solid electrolytes and the Li metal anode[J].Science China Materials,2021,64(6):1378-1385. |
74 | JI Weixiao, ZHENG Dong, ZHANG Xiaoxiao,et al.A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries[J].Journal of Materials Chemistry A,2021,9(26):15012-15018. |
75 | TAN D H S, WU E A, NGUYEN H,et al.Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J].ACS Energy Letters,2019,4(10):2418-2427. |
76 | KIM J S, JUNG S, KWAK H,et al.Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-state Li batteries[J].Energy Storage Materials,2023,55:193-204. |
77 | YU Tianwei, LIANG Jianwen, LUO Liang,et al.Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J].Advanced Energy Materials,2021, 11(36):2101915. |
78 | CHEN Xin, JIA Zhiqing, LV Hanmei,et al.Improved stability against moisture and lithium metal by doping F into Li3InCl6 [J].Journal of Power Sources,2022,545:231939. |
79 | ZHAO Feipeng, SUN Qian, YU Chuang,et al.Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries[J].ACS Energy Letters,2020,5(4):1035-1043. |
80 | TANG Wen, XIA Wei, HUSSAIN F,et al.A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries[J].Journal of Power Sources,2023,568:232992. |
81 | CHEN Shuai, YU Chuang, CHEN Shaoqing,et al.Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping[J].Chinese Chemical Letters,2022,33(10):4635-4639. |
82 | WANG Changhong, LIANG Jianwen, JIANG Ming,et al.Interface-assisted in situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries[J].Nano Energy,2020,76:105015. |
83 | KIM W,NOH J, LEE S,et al.Aging property of halide solid electrolyte at the cathode interface[J].Advanced Materials,2023, 35(32):2301631. |
84 | ZHANG Shumin, ZHAO Feipeng, WANG Shuo,et al.Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte[J].Advanced Energy Materials,2021,11(32):2100836. |
85 | YU Genxi, WANG Yaping, LI Kai,et al.Solution-processable Li10GeP2S12 solid electrolyte for a composite electrode in all-solid-state lithium batteries[J].Sustainable Energy & Fuels,2021,5(4):1211-1221. |
86 | WANG Changhong, YU Ruizhi, DUAN Hui,et al.Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J].ACS Energy Letters,2021,7(1):410-416. |
[1] | 苏宝才, 张勤, 谢元健, 蔡平雄, 潘远凤. 磷酸铁锰锂材料的合成方法及结构改性的研究进展[J]. 无机盐工业, 2024, 56(7): 28-36. |
[2] | 吴晴晴, 许雪棠, 王凡. 高负载锌钴基碱式碳酸盐电极材料的电容性能研究[J]. 无机盐工业, 2024, 56(7): 46-54. |
[3] | 赵鸣芝, 段宏昌, 孙雪芹, 吕鹏刚, 李雪礼, 刘涛, 曹庚振. 水热老化对增产丙烯助剂性能影响的研究[J]. 无机盐工业, 2024, 56(7): 55-60. |
[4] | 刘慧, 王洪亮, 余琨, 高胜男. 煅烧对空气电极的多孔结构和电化学性能的影响[J]. 无机盐工业, 2024, 56(6): 80-86. |
[5] | 刘杰, 石雪茹, 魏树兵, 曹鑫鑫. P2型层状氧化物正极的人工界面层构筑及储钠性能[J]. 无机盐工业, 2024, 56(3): 39-44. |
[6] | 胡文娟, 申小中, 王汝佳, 路露, 邹联力. 退火处理对汽车电池用储氢合金相结构与电化学性能的影响[J]. 无机盐工业, 2024, 56(11): 51-58. |
[7] | 刘佳盛, 罗晓强, 侯翠红, 薛灵伟. 氟掺杂对LiMn0.8Fe0.2PO4/C正极材料电化学性能的影响[J]. 无机盐工业, 2024, 56(11): 45-50. |
[8] | 彭卫锋, 施卫. Co替代Ni对汽车电池用La0.8Mg0.2Ni3.8-x Co x 储氢合金电化学性能的影响[J]. 无机盐工业, 2024, 56(11): 65-71. |
[9] | 陈天东, 赵光钊, 海春喜, 董生德, 贺欣, 许琪, 冯航, 袁少雄, 马路祥, 周园. 包覆与掺杂对富锂锰基材料的改性研究及产业化进展[J]. 无机盐工业, 2023, 55(9): 1-8. |
[10] | 王延苏, 刘国柱, 于海斌. 铂基丙烷脱氢催化剂研究进展[J]. 无机盐工业, 2023, 55(7): 1-9. |
[11] | 韩红静, 张竞择, 拉毛卓玛, 韩吉者, 吴勇民, 汤卫平. 铝钴共掺杂锂锰氧化物的制备及吸附提锂性能[J]. 无机盐工业, 2023, 55(7): 38-44. |
[12] | 田玉玲, 程阳, 韩融, 周梅, 王成杰, 葛强茹. 氧化钙对污泥炭重金属稳定性及其吸附性能的影响[J]. 无机盐工业, 2023, 55(6): 124-129. |
[13] | 罗志波, 王怀有, 王敏, 杜宝强. 纯度对60%NaNO3-40%KNO3二元熔盐热物性的影响[J]. 无机盐工业, 2023, 55(6): 43-49. |
[14] | 李志强, 郭正华, 何玉汝. Zr/Mn元素替代及退火处理对汽车电池用储氢合金电化学性能的影响[J]. 无机盐工业, 2023, 55(6): 78-84. |
[15] | 王延苏, 刘国柱, 于海斌. 非贵金属催化剂用于丙烷脱氢的研究进展[J]. 无机盐工业, 2023, 55(12): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|