无机盐工业 ›› 2025, Vol. 57 ›› Issue (1): 1-13.doi: 10.19964/j.issn.1006-4990.2024-0284
• 综述与专论 • 下一篇
收稿日期:
2024-05-22
出版日期:
2025-01-10
发布日期:
2024-07-08
通讯作者:
刘程琳(1986— ),男,博士,副教授,主要研究方向为电池材料开发;E-mail:liuchenglin@ecust.edu.cn。作者简介:
张珊珊(2000— ),女,硕士研究生在读,主要研究方向为草酸锂正极补锂剂改性研究;E-mail:2638120633@qq.com。
基金资助:
ZHANG Shanshan(), ZENG Yule, ZHANG Ting, LIN Sen, LIU Chenglin(
)
Received:
2024-05-22
Published:
2025-01-10
Online:
2024-07-08
摘要:
锂离子电池近几年在许多行业的应用呈现爆发式增长,几乎每个领域都对锂离子电池的能量密度提出了更高的要求,以满足不断提升的动力和储能需求。锂离子电池在首次充放电过程中,负极表面会形成固态电解质界面(SEI)膜,并消耗正极材料中的活性锂,造成电池容量不可逆的损失,降低了电池的首次库仑效率。研究发现,预锂化技术是解决该问题的有效途径之一,并且正极预锂化相对于负极预锂化更有优势。主要阐述了二元含锂化合物、三元含锂化合物和有机锂盐等几种常见的补锂技术,并综述了正极预锂化添加剂材料对性能优化的进展,指出面临的一些亟待解决的问题,并对未来预锂化技术进行展望。
中图分类号:
张珊珊, 曾雨乐, 张婷, 林森, 刘程琳. 锂离子电池正极预锂化技术研究进展[J]. 无机盐工业, 2025, 57(1): 1-13.
ZHANG Shanshan, ZENG Yule, ZHANG Ting, LIN Sen, LIU Chenglin. Research progress of cathode pre-lithiation technology for lithium-ion batteries[J]. Inorganic Chemicals Industry, 2025, 57(1): 1-13.
表1
常见正极补锂剂对比
种类 | 材料 名称 | 理论比容量/ (mA·h·g-1) | 优点 | 缺点 |
---|---|---|---|---|
二元 含锂 化合 物 | Li2O[ | 620 | 稳定性好 | 易与锂金属发生反应生 成挥发性固体产物 |
Li2O2[ | 1 167 | 预锂化后无残留 | 电极材料粒径需与Li2O2 一致,才能帮助Li2O2分解 | |
LiF[ | 670 | 稳定性好 | 在常规有机电解质中的 溶解度较低、成本较高 | |
Li2S[ | 520 | 稳定性好 | 导电率低 | |
Li3N[ | 1 400 | 预锂化后无残留 | 电子绝缘,与N-甲基-2-吡咯烷酮(NMP)、水反应,需钝化后使用 | |
三元 含锂 化合 物 | Li2NiO2[ | 420~465 | 能充当活性材料 | 空气中不稳定,高电位下 易与电解液发生副反应 |
Li5FeO4[ | 867 | 成本低、工艺简单 | 空气中不稳定,与CO2、 水反应,合浆、涂布需在惰性气氛下进行 | |
Li6CoO4[ | 977 | 首次不可逆比容量高 | 空气稳定性差 | |
有机 锂盐 | Li2C2O4[ | 525 | 电化学稳定性较高、成本低 | 分解电压高 |
Li2C4O4[ | 424 | 高离子电导率、良好的化学稳定性 | 适用范围有限 |
1 | 张娜,米倩玉,邓嘉纬,等.新能源崛起对中国新能源产业战略的影响[J].中国软科学,2024(2):1-8. |
ZHANG Na, MI Qianyu, DENG Jiawei,et al.Impact of the rise of new energy on China′s new energy industry strategy[J].China Soft Science,2024(2):1-8. | |
2 | 罗剑,赵二牛.双碳背景下新能源汽车产业发展研究[J].中国商论,2024(8):128-131. |
LUO Jian, ZHAO Erniu.Research on the development of new energy vehicle industry under the background of“carbon peaking and carbon neutrality”[J].China Journal of Commerce,2024(8):128-131. | |
3 | 郁济敏.2023年锂电池行业发展形势与未来展望[J].电源技术,2024,48(4):550-553. |
YU Jimin.Development situation and future prospect of lithium battery industry in 2023[J].Chinese Journal of Power Sources,2024,48(4):550-553. | |
4 | 梁宏成,赵冬妮,权银,等.SEI膜形貌与结构对锂离子电池性能的影响[J].化工进展,2024,43(9):5049-5062. |
LIANG Hongcheng, ZHAO Dongni, QUAN Yin,et al.Influence of SEI film morphology and structure on the performance of lithium-ion batteries[J].Chemical Industry and Engineering Progress,2024,43(9):5049-5062. | |
5 | LI Peng, ZHAO Guoqiang, ZHENG Xiaobo,et al.Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J].Energy Storage Materials,2018,15:422-446. |
6 | 宗菲菲,李世友,东红,等.锂离子电池预锂化补锂策略研究进展[J].化学通报,2023,86(4):397-404. |
ZONG Feifei, LI Shiyou, DONG Hong,et al.Research progress in pre-lithiation strategies for lithium-ion batteries[J].Chemistry,2023, 86(4):397-404. | |
7 | 李子晨.锂离子电池正极补锂添加剂的制备及其性能研究[D].哈尔滨:哈尔滨工业大学,2020. |
LI Zichen.Preparation and performance study of cathode prelithiation additive in lithium-ion batteries[D].Harbin:Harbin Institute of Technology,2020. | |
8 | KULKARNI P, JUNG H, GHOSH D,et al.A comprehensive review of pre-lithiation/sodiation additives for Li-ion and Na-ion batteries[J].Journal of Energy Chemistry,2023,76:479-494. |
9 | HOLTSTIEGE F, BÄRMANN P, NÖLLE R,et al.Pre-lithiation strategies for rechargeable energy storage technologies:Concepts,promises and challenges[J].Batteries,2018,4(1):4. |
10 | 朱如强,李志伟,孙浩,等.锂离子电池快速发展的关键:预锂化技术[J].电池工业,2021,25(4):209-215. |
ZHU Ruqiang, LI Zhiwei, SUN Hao,et al.The key to the rapid development of lithium-ion batteries:Pre-lithiation technology[J].Chinese Battery Industry,2021,25(4):209-215. | |
11 | 魏沁,周豪杰,李子坤,等.锂离子电池负极预锂化技术研究进展[J].炭素技术,2022,41(4):20-23. |
WEI Qin, ZHOU Haojie, LI Zikun,et al.Research progress of prelithiation technology of anodes for lithium-ion batteries[J].Carbon Techniques,2022,41(4):20-23. | |
12 | ABOUIMRANE A, CUI Yanjie, CHEN Zonghai,et al.Enabling high energy density Li-ion batteries through Li2O activation[J].Nano Energy,2016,27:196-201. |
13 | BIE Yitian, YANG Jun, WANG Jiulin,et al.Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithi-um-ion batteries[J].Chemical Communications,2017,53(59):8324-8327. |
14 | SUN Yongming, LEE H W, ZHENG Guangyuan,et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J].Nano Letters,2016,16(2):1497-1501. |
15 | SUN Yongming, LEE H W, SEH Z W,et al.Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation materi-al[J].Advanced Energy Materials,2016,6(13):1600982. |
16 | PARK K, YU B C, GOODENOUGH J B.Li3N as a cathode additive for high-energy-density lithium-ion batteries[J].Advanced Energy Materials,2016,6(10):1502534. |
17 | 杨斌,傅冠生,丁升,等.以高富锂Li2NiO2/活性炭为正极的锂离子电容器电化学性能研究[J].储能科学与技术,2018,7(2):270-275. |
YANG Bin, FU Guansheng, DING Sheng,et al.Electrochemical performance of lithium ion capacitors using high-capacitance Li2NiO2/AC as the negative electrode[J].Energy Storage Science and Technology,2018,7(2):270-275. | |
18 | WANG Tao, YU Xiaoshuang, FAN Min,et al.Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy[J].Chemical Communications,2019,56(2):245-248. |
19 | NA Ziyu, LAI Chao, ZHOU Jiang,et al.Enhancing the reversible capacity and cycle stability of lithium-ion batteries with Li-compensation material Li6CoO4 [J].Science China Materials,2022,65(3):620-628. |
20 | 张策.基于草酸锂的补锂研究及其在硅基锂离子电池中的应用[D].武汉:华中科技大学,2022. |
ZHANG Ce.Study on the lithium supplementation of lithium oxalate and its application in silicon-based lithium-ion batteries[D].Wuhan:Huazhong University of Science and Technology,2022. | |
21 | SHANMUKARAJ D, GRUGEON S, LARUELLE S,et al.Sacrificial salts:Compensating the initial charge irreversibility in lithium batteries[J].Electrochemistry Communications,2010,12(10):1344-1347. |
22 | SUN Congkai, ZHANG Xiong, LI Chen,et al.High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance[J].Energy Storage Materials,2020,24:160-166. |
23 | 武美玲,牛磊,李世友,等.正极预锂化添加剂用于锂离子电池的研究进展[J].储能科学与技术,2024,13(3):759-769. |
WU Meiling, NIU Lei, LI Shiyou,et al.Research progress on cathode prelithium additives used in lithium-ion batteries[J].Energy Storage Science and Technology,2024,13(3):759-769. | |
24 | 孙仲振,张静,樊培贤,等.锂离子电池预锂化技术的研究[J].化工管理,2020(25):77-78,81. |
SUN Zhongzhen, ZHANG Jing, FAN Peixian,et al.Research on prelithiation technology for lithium-ion batteries[J].Chemical Enterprise Management,2020(25):77-78,81. | |
25 | 聂平,徐桂银,蒋江民,等.预锂化技术及其在高比能硅负极中的应用[J].储能科学与技术,2017,6(5):889-903. |
NIE Ping, XU Guiyin, JIANG Jiangmin,et al.Prelithiation technologies and application in high energy silicon anodes[J].Energy Storage Science and Technology,2017,6(5):889-903. | |
26 | SUN Yongming, LI Yanbin, SUN Jie,et al.Stabilized Li3N for efficient battery cathode prelithiation[J].Energy Storage Materials,2017,6:119-124. |
27 | YANG Siyu, YUE Xinyang, XIA Heyi,et al.Battery prelithiation enabled by lithium fixation on cathode[J].Journal of Power Sources,2020,480:229109. |
28 | 余正兴.磷肥副产氟硅酸钠生产的氟化钠制备工业级氟化锂[D].昆明:昆明理工大学,2013. |
YU Zhengxing.The preparation of industrial-grade lithium fluoride from sodium fluoride produced as a by-product of phosphorus fertilizer[D].Kunming:Kunming University of Science and Technology,2013. | |
29 | 朱成奔,万远鑫,孔令涌,等.补锂添加剂及其制备方法和应用:中国,115312770A[P].2022-11-08. |
30 | 王晓晨.锂离子电池正极补锂剂的研究进展[J].化学世界,2024,65:1-7. |
WANG Xiaochen.Research progress in positive prelithiation additive for lithium ion batteries[J].Chemical World,2024,65:1-7. | |
31 | 田孟羽,詹元杰,闫勇,等.锂离子电池补锂技术[J].储能科学与技术,2021,10(3):800-812. |
TIAN Mengyu, ZHAN Yuanjie, YAN Yong,et al.Replenishment technology of the lithium ion battery[J].Energy Storage Science and Technology,2021,10(3):800-812. | |
32 | 时朝昆,赵煜娟,刘欣艳,等.元素掺杂对LiNiO2正极材料电化学性能的影响[J].电源技术,2004,28(3):184-186. |
SHI Zhaokun, ZHAO Yujuan, LIU Xinyan,et al.Effects of doping on the electrochemical performance of LiNiO2 materials[J].Chinese Journal of Power Sources,2004,28(3):184-186. | |
33 | 季洪祥.LiMn2O4和LiNiO2的合成与改性研究[D].北京:中国科学院大学,2023. |
JI Hongxiang.Synthesis and Modification of LiMn2O4 and LiNiO2 [D].Beijing:University of Chinese Academy of Sciences,2023. | |
34 | PARK H, YOON T, KIM Y U,et al.Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J].Electrochimica Acta,2013,108:591-595. |
35 | JIANG Shiyong, ZHANG Kai, ZHAN Shiying,et al.Improvement of cycling stability of high energy density LiNi0.83Co0.12Mn0.05O2/silicon-graphite batteries via cathode prelithiation agent[J].Materials Letters,2023,335:133791. |
36 | ZHU Bin, ZHANG Wei, LI Zheng,et al.“Fe-locking” effect by g-C3N4 stabilizing lithium iron oxide pre-lithiation additives[J].Journal of Power Sources,2024,592:233944. |
37 | YAO Zhenpeng, CHAN M K Y, WOLVERTON C.Exploring the origin of anionic redox activity in super Li-rich iron oxide-based high-energy-density cathode materials[J].Chemistry of Materials,2022,34(10):4536-4547. |
38 | JOHNSON C S, KANG S H, VAUGHEY J T,et al.Li2O removal from Li5FeO4:A cathode precursor for lithium-ion batteries[J].Chemistry of Materials,2010,22(3):1263-1270. |
39 | ZHANG Linghong, DOSE W M, VU A D,et al.Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4 [J].Journal of Power Sources,2018,400:549-555. |
40 | NOH M, CHO J.Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material[J].Journal of the Electrochemical Society,2012,159(8):A1329-A1334. |
41 | NARUKAWA S, TAKEDA Y, NISHIJIMA M,et al.Anti-fluorite type Li6CoO4,Li5FeO4,and Li6MnO4 as the cathode for lithium secondary batteries[J].Solid State Ionics,1999,122(1/2/3/4):59-64. |
42 | LIM Y G, KIM D, LIM J M,et al.Anti-fluorite Li6CoO4 as an alternative lithium source for lithium ion capacitors:An experimental and first principles study[J].Journal of Materials Chemistry A,2015,3(23):12377-12385. |
43 | SOLCHENBACH S, WETJEN M, PRITZL D,et al.Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells[J].Journal of the Electrochemical Society,2018,165(3):A512-A524. |
44 | SCHWENKE K U, SOLCHENBACH S, DEMEAUX J,et al.The impact of CO2 evolved from VC and FEC during formation of graphite anodes in lithium-ion batteries[J].Journal of the Electrochemical Society,2019,166(10):A2035-A2047. |
45 | HUANG C J, HSU Y C, SHITAW K N,et al.Lithium oxalate as a lifespan extender for anode-free lithium metal batteries[J].ACS Applied Materials & Interfaces,2022:14(23):26724-26732. |
46 | FAN Lijuan, TANG Daichun, WANG Deyu,et al.LiCoO2-catalyzed electrochemical oxidation of Li2CO3 [J].Nano Research,2016,9(12):3903-3913. |
47 | HUANG Guxin, LIANG Jianing, ZHONG Xingguo,et al.Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries[J].Nano Research,2023,16(3):3872-3878. |
48 | SHEN Bolei, SARKODIE B, ZHANG Ling,et al.Self-sacrificing lithium source with high electrochemical activity and water oxygen stability and its application in Si-C//S battery[J].Energy Storage Materials,2022,45:687-695. |
49 | ARNAIZ M, SHANMUKARAJ D, CARRIAZO D,et al.A transversal low-cost pre-metallation strategy enabling ultrafast and sta-ble metal ion capacitor technologies[J].Energy & Environmental Science,2020,13(8):2441-2449. |
50 | HOU Wangwen, LI Yuyin, LI Shaobo,et al.Lithium dendrite suppression with Li3N-rich protection layer formation on 3D anode via ultra-low temperature nitriding[J].Chemical Engineering Jo- urnal,2022,441:136067. |
51 | LEE D, SUN S, KWON J,et al.Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes[J].Advanced Materials,2020,32(7):1905573. |
52 | HA Y, SCHULZE M C, FRISCO S,et al.Li2O-based cathode additives enabling prelithiation of Si anodes[J].Applied Sciences,2021,11(24):12027. |
53 | SUN Yongming, LEE H W, SEH Z W,et al.High-capacity battery cathode prelithiation to offset initial lithium loss[J].Nature Energy,2016,1(1):15008. |
54 | QIAO Yu, YANG Huijun, CHANG Zhi,et al.A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J].Nature Energy,2021,6:653-662. |
55 | 苏冠睿,张春飞,艾旺圣,等.硫化锂正极材料及研究进展[J].电源技术,2021,45(12):1650-1654. |
SU Guanrui, ZHANG Chunfei, AI Wangsheng,et al.Lithium sulfide cathode materials and research progress[J].Chinese Journal of Power Sources,2021,45(12):1650-1654. | |
56 | 李巧乐,燕映霖,杨蓉,等.锂硫电池用硫化锂正极复合材料的研究现状[J].化工进展,2017,36(9):3353-3361. |
LI Qiaole, YAN Yinglin, YANG Rong,et al.Research status of lithium sulfide composites as cathode for lithium sulfur battery[J].Chemical Industry and Engineering Progress,2017,36(9):3353-3361. | |
57 | LIU Yanru, LV Yao, LI Nanrui,et al.LiF/Fe composite for Ni-rich cathode prelithiation:Synthesis,bilayer structured electrode and lithium loss compensation[J].Chemical Engineering Journal,2024,484:149550. |
58 | LEE M J,NOH M, PARK M H,et al.The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures[J].Journal of Materials Chemistry A,2015,3(25):13453-13460. |
59 | KIM M G, CHO J.Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell[J].Journal of Materials Chemistry,2008,18(48):5880-5887. |
60 | PARK S, YOU M J, BYEON Y S,et al.Stabilizing the surface of Li2NiO2 cathode additive by coating amorphous niobium oxy-carbide for lithium-ion batteries[J].Materials Today Energy,2023,36:101351. |
61 | LEE S W, KIM H K, KIM M S,et al.A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites[J].Scientific Reports,2017,7:46530. |
62 | PARK M S, LIM Y G, HWANG S M,et al.Scalable integration of Li5FeO4 towards robust,high-performance lithium-ion hybrid capacitors[J].ChemSusChem,2014,7(11):3138-3144. |
63 | LIU Xiaolin, LIU Jiali, PENG Jiao,et al.Addressing the initial lithium loss of lithium ion batteries by introducing pre-lithiation reagent Li5FeO4/C in the cathode side[J].Electrochimica Acta,2024,481:143918. |
64 | YANG Zhigao, DAI Yu, WANG Shengping,et al.How to make lithium iron phosphate better:A review exploring classical modification approaches in-depth and proposing future optimization methods[J].Journal of Materials Chemistry A,2016,4(47):18210-18222. |
65 | ZHU Bin, ZHANG Wei, WANG Qiyu,et al.Understanding the air-exposure degradation chemistry of the sacrificial cathode additive Li5FeO4 for Li-ion batteries[J].Advanced Functional Materials,2024,34(22):2315010. |
66 | LI Jie, ZHU Bin, LI Shihao,et al.Air-stable Li6CoO4@Li5FeO4 pre-lithiation reagent in cathode enabling high performance lithium-ion batteries[J].Journal of the Electrochemical Society,2021,168(8):080510. |
67 | ZHONG Wei, WU Qiang, WU Yuanke,et al.Scalable spray-dried high-capacity MoC1- x /NC-Li2C2O4prelithiation composite for lit-hium-ion batteries[J].Energy Storage Materials,2024,68:103318. |
68 | LIU Ganxiong, WAN Wang, NIE Quan,et al.Controllable long-term lithium replenishment for enhancing energy density and cycle life of lithium-ion batteries[J].Energy & Environmental Science,2024,17(3):1163-1174. |
[1] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
[2] | 薛山, 刘璐, 戴建升, 李晴, 冯泽, 李意能. 铕掺杂改善锂离子电池正极材料LiFePO4电化学性能研究[J]. 无机盐工业, 2024, 56(8): 67-73. |
[3] | 朱宗将, 王刚, 魏元峰, 唐艳红, 角田诚, 刘承斌. 退役锂离子电池电解液资源化回收技术进展与展望[J]. 无机盐工业, 2024, 56(7): 11-17. |
[4] | 赵添婷, 朱德伦, 杨林, 周鑫磊. 锂离子电池多孔硅负极材料制备及工艺优化[J]. 无机盐工业, 2024, 56(5): 31-38. |
[5] | 周海涛, 温承钦, 郑玲, 孙洁. 金属锂电池负极界面氮化硼修饰膜的研究[J]. 无机盐工业, 2024, 56(4): 85-89. |
[6] | 李亚广, 韩东战, 齐利娟. 废旧锂离子电池预处理及电解液回收技术研究现状[J]. 无机盐工业, 2024, 56(2): 1-10. |
[7] | 刘娟, 蒋庆来, 张月异. 4.6 V高电压钴酸锂正极材料Al-Zn共掺杂研究[J]. 无机盐工业, 2024, 56(11): 59-64. |
[8] | 冯准. B/Al/Zr协同策略改善高镍单晶正极材料高温稳定性[J]. 无机盐工业, 2023, 55(8): 59-64. |
[9] | 于惠, 王榆彬, 廖折军, 杨云广. 废旧三元锂离子动力电池循环再生利用工艺概述[J]. 无机盐工业, 2023, 55(7): 32-37. |
[10] | 朱志红, 朱永芳. 硅掺杂锰酸锂的自蔓延燃烧制备及其性能研究[J]. 无机盐工业, 2023, 55(5): 66-70. |
[11] | 田朋, 徐金钢, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 纳米氧化铝浆料制备及用于改性锂电池正极材料[J]. 无机盐工业, 2023, 55(12): 43-49. |
[12] | 唐迪,王俊雄,陈稳,季冠军,马骏,周光敏. 退役锂离子电池正极材料直接回收的研究现状和展望[J]. 无机盐工业, 2023, 55(1): 15-25. |
[13] | 周诗雨,何婷,付彤彤,郭子睿,顾帅,于建国. 退役锂离子电池湿法回收生命周期和经济评价[J]. 无机盐工业, 2023, 55(1): 26-32. |
[14] | 徐前进,徐金钢,田朋,刘坤吉,高婷婷,宁桂玲. 氧化铝包覆锂离子电池正极材料的研究进展[J]. 无机盐工业, 2023, 55(1): 46-55. |
[15] | 刘金杭,杨志鹏,陈修栋,罗宇轩,余浪华,汪亚威,占昌朝,曹小华. 新型多孔炭的制备及其储锂性能[J]. 无机盐工业, 2022, 54(9): 85-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|