无机盐工业 ›› 2024, Vol. 56 ›› Issue (4): 8-15.doi: 10.19964/j.issn.1006-4990.2023-0399
收稿日期:
2023-08-07
出版日期:
2024-04-10
发布日期:
2024-04-18
作者简介:
周旋(1990— ),女,硕士,实验师,主要研究方向为过渡金属化合物及其复合材料在电催化领域的应用;E-mail:zhouxuan@aust.edu.cn。
基金资助:
ZHOU Xuan(), LI Mengrui, CHEN Yichen, FAN Huiqiang, WANG Bin, YUAN Gang
Received:
2023-08-07
Published:
2024-04-10
Online:
2024-04-18
摘要:
镍基磷化合物因其自身的类氢化酶电子结构和其出色的稳定性被证明具有良好的电解水析氢能力。单金属磷化物因其本征活性不足、导电性不高及稳定性较差等问题,使其在实际应用上受到了限制。综述了结构新颖、性能优异和稳定性高的镍基磷化物复合材料的研究进展,总结和分析了通过杂原子掺杂、形貌调控、结合自支撑材料和复合新型材料(碳纳米管、石墨烯、石墨炔、二维材料MXene)等方式在调控催化材料的电子结构、微观形貌、促进长时间电解稳定性、增大比表面积和提高导电性方面提升电解水析氢性能的研究成果。为探索催化活性高和结构稳定兼备的新型镍基磷化物复合材料提供研究方向。
中图分类号:
周旋, 李梦锐, 陈一尘, 樊辉强, 王宾, 袁刚. 镍基磷化物复合材料在催化电解水析氢性能提升方面的研究进展[J]. 无机盐工业, 2024, 56(4): 8-15.
ZHOU Xuan, LI Mengrui, CHEN Yichen, FAN Huiqiang, WANG Bin, YUAN Gang. Research progress of nickel-based phosphide composites in improving of catalytic water electrolysis for hydrogen evolution performance[J]. Inorganic Chemicals Industry, 2024, 56(4): 8-15.
1 | LIU Ping, RODRIGUEZ J A. Catalysts for hydrogen evolution from the[NiFe]hydrogenase to the Ni2P(001) surface:The importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42):14871-14878. |
2 | POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25):9267-9270. |
3 | JAKŠIĆ M M. Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory[J]. Journal of Molecular Catalysis, 1986, 38(1/2):161-202. |
4 | 马洁, 刘顺诚, 江琳才, 等. 纳米晶Ni-Mo合金复合镀层中钼含量对析氢反应的影响[J]. 化学学报, 1997, 55(4):363-369. |
MA Jie, LIU Shuncheng, JIANG Lincai, et al. Effects of molybdenum content of nanocrystalline Ni-Mo alloy composite coating on hydrogen evolution reaction[J]. Acta Chimica Sinica, 1997, 55(4):363-369. | |
5 | TRASATTI S. Work function,electronegativity,and electrochemical behaviour of metals[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 39(1):163-184. |
6 | LI Yang, DONG Zihao, JIAO Lifang. Multifunctional transition metal-based phosphides in energy-related electrocatalysis[J]. Advanced Energy Materials, 2020, 10(11):1902104. |
7 | ZHANG Bing, YANG Fan, LIU Xiaodong, et al. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting[J]. Applied Catalysis B:Environmental, 2021, 298:120494. |
8 | 戴凌杰. 多组分过渡金属磷化物复合材料的制备及其水分解性能研究[D]. 长春: 吉林大学, 2022. |
DAI Lingjie. Preparation of multicomponent transition metal phosphate composite and study on its hydrolysis performance[D]. Changchun: Jilin University, 2022. | |
9 | GUO Baoyu, WANG Yiwei, DONG Bin. Controllable leaching of Ag2WO4 template for production of Ni-Co-P nanosheets as electrocatalyst for hydrogen evolution[J]. International Journal of Electrochemical Science, 2022, 17(9):22091. |
10 | WU Konglin, SUN Kaian, LIU Shoujie, et al. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution[J]. Nano Energy, 2021, 80:105467. |
11 | WANG Yue, CHEN Zhi, LI Qichang, et al. Porous needle-like Fe-Ni-P doped with Ru as efficient electrocatalyst for hydrogen generation powered by sustainable energies[J]. Nano Research, 2023, 16(2):2428-2435. |
12 | 瞿国兴. 非金属元素掺杂型电催化剂的制备及其催化电解水性能研究[D]. 成都: 电子科技大学, 2020. |
QU Guoxing. The study of nonmetal-doped electrocatalyst synthesis and their performances in catalyzing water electrolysis[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
13 | ZHANG Xiangrui, SHI Xuerong, WANG Peijie, et al. Bio-inspired design of NiFeP nanoparticles embedded in(N,P) co-doped carbon for boosting overall water splitting[J]. Dalton Transactions, 2023, 52(20):6860-6869. |
14 | SONG D, HONG D, KWON Y, et al. Highly porous Ni-P electrode synthesized by an ultrafast electrodeposition process for efficient overall water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(24):12069-12079. |
15 | WANG Yuan, ARANDIYAN H, CHEN Xianjue, et al. Microwave-induced plasma synthesis of defect-rich,highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis[J]. The Journal of Physical Chemistry C, 2020, 124(18):9971-9978. |
16 | KHALID M, BHARDWAJ P A, HONORATO A M B, et al. Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction,oxygen evolution,and hydrogen evolution reactions[J]. Catalysis Science & Technology, 2020, 10(19):6420-6448. |
17 | NIU Shanshan, YANG Ji, QI Haifeng, et al. Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction[J]. Journal of Energy Chemistry, 2021, 57:371-377. |
18 | 段钱花, 王森林, 王丽品. 电沉积多孔复合Ni-P/LaNi5电极及其析氢电催化性能[J]. 物理化学学报, 2013, 29(1):123- 130. |
DUAN Qianhua, WANG Senlin, WANG Lipin. Electro-deposition of the porous composite Ni-P/LaNi5 electrode and its electro-catalytic performance toward hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2013, 29(1):123-130. | |
19 | TIAN Gaoqi, WEI Songrui, GUO Zhangtao, et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Science & Technology, 2021, 77:108-116. |
20 | ZHAO Hongwu, LIANG Jicai, ZHENG Qifeng. Construction of core-shell heterostructure NiO@Co0.5Fe0.5P as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Alloys and Compounds, 2022, 905:164264. |
21 | SUN Hongming, YAN Zhenhua, LIU Fangming, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): e1806326. |
22 | MA Xingxing, CHANG Yaqing, ZHANG Zhe, et al. Forest-like NiCoP@Cu3P supported on copper foam as a bifunctional catalyst for efficient water splitting[J]. Journal of Materials Chemistry A, 2018, 6(5):2100-2106. |
23 | DING Yu, MIAO Boqiang, LI Shuni, et al. Benzylamine oxidation boosted electrochemical water-splitting:Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam[J]. Applied Catalysis B:Environmental, 2020, 268:118393. |
24 | ZENG Min, LI Yanguang. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(29):14942-14962. |
25 | 孙善善. 电沉积法制备镍磷化物多孔电极及其析氢性能研究[D]. 镇江: 江苏大学, 2020. |
SUN Shanshan. Preparation of nickel phosphide porous electrode by electrodeposition and its hydrogen evolution performance[D]. Zhenjiang: Jiangsu University, 2020. | |
26 | XIANG Zhongcheng, ZHANG Zhong, XU Xijin, et al. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Carbon, 2016, 98:84-89. |
27 | LI Jiachen, ZHANG Chi, MA Huijun, et al. Modulating interfacial charge distribution of single atoms confined in molybdenum phosphosulfide heterostructures for high efficiency hydrogen evoluti-on[J]. Chemical Engineering Journal, 2021, 414:128834. |
28 | 葛晨娇, 崔伟, 田坚. 生长在碳布上的磷化镍纳米颗粒膜的制备及其电催化析氢反应性能[C]// 中国新材料技术协会. 第三届国防装备轻质高强新材料应用研讨会, 2015. |
29 | YANG Fan, YANG Shuqin, NIU Qianqian, et al. Fabrication of a 3D self-supporting Ni-P/Ni2P/CC composite and its robust hydrogen evolution reaction properties in alkaline solution[J]. New Journal of Chemistry, 2020, 44(20):8183-8190. |
30 | CHEN Xiaogang, ZHAO Xuan, WANG Yuanyuan, et al. Layered Ni-Co-P electrode synthesized by CV electrodeposition for hydrogen evolution at large currents[J]. ChemCatChem, 2021, 13(16):3619-3627. |
31 | LU Bowen, WANG Yanhui, LI Wei, et al. Ni-P alloy@carbon nanotubes immobilized on the framework of Ni foam as a 3D hierarchical porous self-supporting electrode for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(45):23245-23253. |
32 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. |
33 | GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191. |
34 | BALANDIN A A, GHOSH S, BAO Wenzhong, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907. |
35 | QIU Bocheng, ZHOU Yi, MA Yunfei, et al. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis[J]. Scientific Reports, 2015, 5:8591. |
36 | ZOU Haiyuan, LI Ge, DUAN Lele, et al. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting[J]. Applied Catalysis B:Environmental, 2019, 259:118100. |
37 | DING Guosheng, ZHANG Yixin, DONG Jing, et al. Fabrication of Ni2P/Ni5P4 nanoparticles embedded in three-dimensional N-doped graphene for acidic hydrogen evolution reaction[J]. Materials Letters, 2021, 299:130071. |
38 | HUANG Changshui, LI Yongjun, WANG Ning, et al. Progress in research into 2D graphdiyne-based materials[J]. Chemical Reviews, 2018, 118(16):7744-7803. |
39 | YIN Xuepeng, LU D, WANG Jiawei, et al. 2D/2D heterojunction of Ni-Co-P/graphdiyne for optimized electrocatalytic overall water splitting[J]. ChemCatChem, 2019, 11(22):5407-5411. |
40 | GAO Juan, LI Yaxin, YU Xin, et al. Graphdiyne reinforced multifunctional Cu/Ni bimetallic Phosphides-Graphdiyne hybrid nanostructure as high performance electrocatalyst for water splitting[J]. Journal of Colloid and Interface Science, 2022, 628:508-518. |
41 | XU Xiaodan, ZHANG Yelong, SUN Hongyang, et al. Progress and perspective:MXene and MXene-based nanomaterials for high-performance energy storage devices[J]. Advanced Electronic Materials, 2021, 7(7):1-16. |
42 | Luna TIE, LI Neng, YU Chongfei, et al. Self-supported nonprecious MXene/Ni3S2 electrocatalysts for efficient hydrogen generation in alkaline media[J]. ACS Applied Energy Materials, 2019, 2(9):6931-6938. |
43 | KUZNETSOV D A, CHEN Zixuan, KUMAR P V, et al. Single site cobalt substitution in 2D molybdenum carbide(MXene) enhances catalytic activity in the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(44):17809-17816. |
44 | LEE S, KIM E H, YU S, et al. Polymer-laminated Ti3C2T X MXene electrodes for transparent and flexible field-driven electronics[J]. Journal of the American Chemical Society, 2021, 15(5):8940-8952. |
45 | KELLY T G, CHEN J G. Metal overlayer on metal carbide substrate:Unique bimetallic properties for catalysis and electrocatalysis[J]. Chemical Society Reviews, 2012, 41(24):8021-8034. |
46 | WU Yuting, NIE Ping, WANG Jiang, et al. Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance[J]. ACS Applied Materials & Interfaces, 2017, 9(45):39610-39617. |
47 | LUKATSKAYA M R, KOTA S, LIN Zifeng, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8):17105. |
48 | GHIDIU M, LUKATSKAYA M R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81. |
49 | WANG Pengyan, PU Zonghua, LI Wenqiang, et al. Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting[J]. Journal of Catalysis, 2019, 377:600- 608. |
50 | PU Zonghua, LIU Tingting, AMIINU I S, et al. Transition-metal phosphides:Activity origin,energy-related electrocatalysis applications,and synthetic strategies[J]. Advanced Functional Materials, 2020, 30(45):2004009. |
51 | LUO Xu, JI Pengxia, WANG Pengyan, et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/Ni x P y hollow heterostructure nanorods for efficient overall water splitting[J]. Advanced Energy Materials, 2020, 10(17):1903891. |
52 | JI Pengxia, JIN Huihui, XIA Hongliang, et al. Double metal diphosphide pair nanocages coupled with P-doped carbon for accelerated oxygen and hydrogen evolution kinetics[J]. ACS Applied Materials & Interfaces, 2020, 12(1):727-733. |
53 | LV Zepeng, WANG Meng, LIU Dong, et al. Synergetic effect of Ni2P and MXene enhances catalytic activity in the hydrogen evolution reaction[J]. Inorganic Chemistry, 2021, 60(3):1604-1611. |
[1] | 罗成玲, 范小凡. 微结构调控催化剂用于尿素氧化反应的研究进展[J]. 无机盐工业, 2025, 57(2): 26-35. |
[2] | 张飞刚, 刘中利. CuO/g-C3N4复合材料在有机染料降解和超级电容器中的应用研究[J]. 无机盐工业, 2025, 57(1): 129-136. |
[3] | 李曌, 尹优优, 刘晨辉, 王访, 高冀芸. 二维碳化钛/氧化锌纳米颗粒的制备及其乙醇气敏性能研究[J]. 无机盐工业, 2024, 56(8): 33-39. |
[4] | 王挺, 章文文, 毛庆, 吕丽, 刘长珍. 二氧化碳电还原制乙醇催化体系与材料研究进展[J]. 无机盐工业, 2024, 56(7): 1-10. |
[5] | 谢江, 郭戈, 邱洁. 负载型活性炭粒子三维电极法处理亚甲基蓝模拟废水[J]. 无机盐工业, 2024, 56(5): 78-86. |
[6] | 陈星亮, 范文娟, 常会, 黄海平, 蒋志强. Fe3+协同Ni基金属-有机框架提升电催化析氧反应活性的研究[J]. 无机盐工业, 2024, 56(2): 152-158. |
[7] | 王延苏, 冯晴, 刘国柱, 于海斌, 孙彦民, 南军. 封装型丙烷脱氢催化剂的研究进展[J]. 无机盐工业, 2024, 56(11): 95-104. |
[8] | 陈俊雪, 莫建欣, 周治宇, 李中林, 王丁, 李玉平, 胡拥军, 将学先, 李义兵. NaFe x Cr y (SO4)2(OH)6的合成及电化学性能研究[J]. 无机盐工业, 2023, 55(8): 71-76. |
[9] | 郜飞, 董良飞, 葛玉龙, 唐园园, 李芬. 污泥生物炭/凹凸棒土的制备及其吸附性能研究[J]. 无机盐工业, 2023, 55(5): 91-99. |
[10] | 武鲁明, 于海斌, 王亚权. 多孔碳材料的制备及其金属磷化物氧还原性能研究[J]. 无机盐工业, 2023, 55(4): 104-110. |
[11] | 兰蓥华, 陈艳梅, 马瑞霄, 张燕辉. 铈钛氧化物-凹凸棒土的制备及其光催化性能[J]. 无机盐工业, 2023, 55(4): 133-140. |
[12] | 王延苏, 刘国柱, 于海斌. 非贵金属催化剂用于丙烷脱氢的研究进展[J]. 无机盐工业, 2023, 55(12): 1-11. |
[13] | 袁子鸥, 王峰, 祁星朝, 张琦, 马剑龙, 唐忠锋. 氯化钠-硫酸钠/硅基相变材料的热物性研究[J]. 无机盐工业, 2023, 55(10): 114-120. |
[14] | 周敏. PANI/TIO复合材料的制备及其在 聚氨酯涂料中的应用[J]. 无机盐工业, 2023, 55(1): 112-117. |
[15] | 王翛茜,宋慧平,薛芳斌. 无机盐晶须的制备以及应用研究进展[J]. 无机盐工业, 2022, 54(8): 20-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|