无机盐工业 ›› 2025, Vol. 57 ›› Issue (4): 11-21.doi: 10.19964/j.issn.1006-4990.2024-0219
王智禹1(), 宋坤1, 沈苗2, 申娉2, 肖沛瑶1, 杨春明3(
)
收稿日期:
2024-04-19
出版日期:
2025-04-10
发布日期:
2024-08-01
通讯作者:
杨春明(1965— ),男,博士,教授,主要研究方向为能源材料及绿色化工过程;E-mail:chunmingyang@126.com。作者简介:
王智禹(1993— ),男,硕士,实验师,主要研究方向为电化学纳米材料研究;E-mail:252810658@qq.com。
基金资助:
WANG Zhiyu1(), SONG Kun1, SHEN Miao2, SHEN Ping2, XIAO Peiyao1, YANG Chunming3(
)
Received:
2024-04-19
Published:
2025-04-10
Online:
2024-08-01
摘要:
石墨毡(GF)作为传统电极材料,虽然具有独特三维多孔结构和良好的导电性,但存在表面润湿性差、电化学活性不够等固有缺陷。为此,研究者聚焦于利用物理、化学、电化学等多种方法通过引入特定的官能团或纳米结构活化石墨毡基底,从而制备出具有优异性能的复合电极材料,在高效储能领域展现出广阔的应用前景。在介绍石墨毡特性及储能机制基础上,重点综述了石墨毡表面沉积过渡金属化合物、导电聚合物与碳质材料的改性优势,以及采取杂原子(O、S、N等)掺杂,调变GF表面润湿性、电导率和电催化活性,从而突出GF复合材料在可穿戴设备及轻量化储能装置中的应用前景。同时,也指出GF复合材料在制备工艺精确调控中面临的挑战。未来随着材料科学、表面处理技术和电化学理论的不断发展,GF表面改性有望催生更多创新技术,为超级电容器的商业化应用提供理论支撑。
中图分类号:
王智禹, 宋坤, 沈苗, 申娉, 肖沛瑶, 杨春明. 基于表面改性石墨毡复合材料的超级电容器研究进展[J]. 无机盐工业, 2025, 57(4): 11-21.
WANG Zhiyu, SONG Kun, SHEN Miao, SHEN Ping, XIAO Peiyao, YANG Chunming. Research progress of supercapacitors based on surface modified graphite felt composite materials[J]. Inorganic Chemicals Industry, 2025, 57(4): 11-21.
表1
不同物质掺杂GF及电化学性能比较
掺杂物质 | 电流密度 | 比电容 |
---|---|---|
O原子[ | 15 mA/cm2 | 3.34 F/cm2 |
O原子[ | 23 mA/g | 205 F/g |
N原子[ | 0.1 A/g | 222 F/g |
GR分散体[ | 20 mA/g | 8.67 F/g |
CNT[ | 1 A/g | 316 F/g |
生物质炭[ | 1 A/g | 255 F/g |
PPy[ | 0.5 A/cm2 | 527.5 mF/cm2 |
PHQ[ | 0.08 mA/cm2 | 129.4 F/m2 |
PPy[ | 0.25 A/g | 190 F/g |
MnO2[ | 1.4 mA/cm2 | 832 mF/cm2 |
NiCo2O4[ | 2 mA/g | 243.1 mA∙h/g |
Co2(OH)2CO3与Ni-P[ | 1 mA/cm2 | 1 360 mF/cm2 |
Co(OH)2与Ni(OH)2[ | 5 mA/cm2 | 567.6 F/g |
MXene (Ti3C2T x )[ | 0.25 A/g | 55.4 F/g |
MnCo氧化物[ | 2 A/g | 854 F/g |
FePO4与PANI[ | 1 mA/cm2 | 2 606.8 mF/cm2 |
V2O5与PIn[ | 1 mA/cm2 | 2 254 mF/cm2 |
Co2+掺杂PANI[ | 0.2 A/g | 562 F/g |
PPy与MnO2[ | 0.5 A/g | 821.3 F/g |
PPy与NiCoSe2[ | 0.025 A/cm3 | 5.21 F/cm3 |
GR与MnO2[ | 4 A/g | 129 F/g |
[1] | NASERI F, KARIMI S, FARJAH E,et al.Supercapacitor management system:A comprehensive review of modeling,estimation,balancing,and protection techniques[J].Renewable and Sustainable Energy Reviews,2022,155:111913. |
[2] | NA Y W, CHEON J Y, KIM J H,et al.All-in-one flexible supercapacitor with ultrastable performance under extreme load[J].Science Advances,2022,8(1):eabl8631. |
[3] | XU Yanfang, LU Weibang, XU Guangbiao,et al.Structural supercapacitor composites:A review[J].Composites Science and Technology,2021,204:108636. |
[4] | WANG Yanmin, WU Xueliang, HAN Yongqin,et al.Flexible supercapacitor:Overview and outlooks[J].Journal of Energy Storage,2021,42:103053. |
[5] | POONAM, SHARMA K, ARORA A,et al.Review of supercapacitors:Materials and devices[J].Journal of Energy Storage,2019,21:801-825. |
[6] | 沈威,王思楠,梁雪梅,等.纳米MOFs及其衍生物在超级电容器中的研究进展[J].无机盐工业,2021,53(6):79-86. |
SHEN Wei, WANG Sinan, LIANG Xuemei,et al.Research progress of nano MOFs and their derivatives for supercapacitors[J].Inorganic Chemicals Industry,2021,53(6):79-86. | |
[7] | ZHU Qiancheng, ZHAO Danyang, CHENG Mingyu,et al.A new view of supercapacitors:Integrated supercapacitors[J].Advanced Energy Materials,2019,9(36):1901081. |
[8] | WANG Xin, SAY M G, BROOKE R,et al.Upscalable ultra thick rayon carbon felt based hybrid organic-inorganic electrodes for high energy density supercapacitors[J].Energy Storage,2022,4(5):e348. |
[9] | 王典,苏琼,庞少峰,等.基于氧化铁/生物质碳复合材料的高性能超级电容器研究[J].无机盐工业,2022,54(3):59-65. |
WANG Dian, SU Qiong, PANG Shaofeng,et al.Study on high-performance supercapacitors based on Fe2O3/biomass carbon composites[J].Inorganic Chemicals Industry,2022,54(3):59-65. | |
[10] | 张欢,谭毅,罗旭东,等.PAN基碳毡碳化过程中的结构演变及电化学特性[J].硅酸盐学报,2018,46(3):369-376. |
ZHANG Huan, TAN Yi, LUO Xudong,et al.Structural evolution and electrochemical properties of PAN based carbon felt during carbonization[J].Journal of the Chinese Ceramic Society,2018,46(3):369-376. | |
[11] | RABBOW T J, TRAMPERT M, POKORNY P,et al.Variability within a single type of polyacrylonitrile-based graphite felt after thermal treatment.Part I:Physical properties[J].Electrochimica Acta,2015,173:17-23. |
[12] | CASTAÑEDA L F, WALSH F C, NAVA J L,et al.Graphite felt as a versatile electrode material:Properties,reaction environment,performance and applications[J].Electrochimica Acta,2017,258:1115-1139. |
[13] | NAJIB S, ERDEM E.Current progress achieved in novel materials for supercapacitor electrodes:Mini review[J].Nanoscale Advances,2019,1(8):2817-2827. |
[14] | WANG Yifan, ZHANG Lin, HOU Haoqing,et al.Recent progress in carbon-based materials for supercapacitor electrodes:A revi-ew[J].Journal of Materials Science,2021,56(1):173-200. |
[15] | KUMAR S, SAEED G, ZHU Ling,et al.0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor:A review[J].Chemical Engineering Journal,2021,403:126352. |
[16] | SAIKIA B K, BENOY S M, BORA M,et al.A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials[J].Fuel,2020,282:118796. |
[17] | SAHA S, SAMANTA P, MURMU N C,et al.A review on the heterostructure nanomaterials for supercapacitor application[J].Jour- nal of Energy Storage,2018,17:181-202. |
[18] | LEE W J, WU Yuting, LIAO Yiwei,et al.Graphite felt modified by atomic layer deposition with TiO2 nanocoating exhibits super-hydrophilicity,low charge-transform resistance,and high electrochemical activity[J].Nanomaterials,2020,10(9):1710. |
[19] | SU Yang, CHEN Na, REN Hailin,et al.Preparation and properties of indium ion modified graphite felt composite electrode[J].Frontiers in Chemistry,2022,10:899287. |
[20] | KIM M, LI Shuwei, KONG D S,et al.Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell[J].Chemosphere,2023,313:137388. |
[21] | LIANG Yinxiu, ZHAI Hongyan, LIU Boyue,et al.Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells[J].Science of the Total Environment,2020,713:136483. |
[22] | ŚWIĄTKOWSKI A, KUŚMIEREK E, CHRZEŚCIJAŃSKA E,et al.Electrochemical and catalytic properties of carbon dioxide-activated graphite felt[J].Molecules,2022,27(19):6298. |
[23] | GUO Hongkai, ZHAO Chengwen, XU Hu,et al.Enhanced H2O2 formation and norfloxacin removal by electro-Fenton process using a surface-reconstructed graphite felt cathode:New insight into synergistic mechanism of defective active sites[J].Environmental Research,2023,220:115221. |
[24] | DONG Zekun, ZHANG Yan, YAO Jie.Enhancement of H2O2 yield and TOC removal in electro-peroxone process by electrochemically modified graphite felt:Performance,mechanism and stability[J].Chemosphere,2022,295:133896. |
[25] | TAO Yingjie, LIU Wenning, LI Zhipeng,et al.Boosting supercapacitive performance of flexible carbon via surface engineering[J].Journal of Colloid and Interface Science,2021,602:636-645. |
[26] | TIAN Meng, WU Jiawen, LI Ruihan,et al.Fabricating a high-energy-density supercapacitor with asymmetric aqueous redox additive electrolytes and free-standing activated-carbon-felt electrodes[J].Chemical Engineering Journal,2019,363:183-191. |
[27] | 项林忆,文劲松,胡斌,等.多孔碳及其复合材料在超级电容器中的研究进展[J].化工新型材料,2023,51(3):20-24,30. |
XIANG Linyi, WEN Jinsong, HU Bin,et al.Research progress of porous carbon and its composites in supercapacitors[J].New Chemical Materials,2023,51(3):20-24,30. | |
[28] | SHAO Yuanlong, EL-KADY M F, SUN Jingyu,et al.Design and mechanisms of asymmetric supercapacitors[J].Chemical Reviews,2018,118(18):9233-9280. |
[29] | LI Zhenhui, XU Ke, PAN Yusheng.Recent development of supercapacitor electrode based on carbon materials[J].Nanotechnology Reviews,2019,8(1):35-49. |
[30] | DUBEY R, GURUVIAH V.Review of carbon-based electrode materials for supercapacitor energy storage[J].Ionics,2019,25(4):1419-1445. |
[31] | FENG Xin, BAI Ying, LIU Mingquan,et al.Untangling the respective effects of heteroatom-doped carbon materials in batteries,supercapacitors and the ORR to design high performance materials[J].Energy & Environmental Science,2021,14(4):2036-2089. |
[32] | CHEN Yashi, HUANG Danlian, LEI Lei,et al.Oxygen vacancy-rich doped CDs@graphite felt-600 heterostructures for high-performance supercapacitor electrodes[J].Nanoscale,2021,13(9):4995-5005. |
[33] | ABAALKHAIL A A, ALSHAMMARI B A, ALMUTAIRI G N,et al.Enhancing the performance of a metal-free self-supported carbon felt-based supercapacitor with facile two-step electrochemical activation[J].Nanomaterials,2022,12(3):427. |
[34] | 李莹,张寿春,吕春祥.富氮多孔碳纤维的制备及其在超级电容器中的应用[J].化学工业与工程,2014,31(3):34-38. |
LI Ying, ZHANG Shouchun, Chunxiang LÜ.Preparation of nitrogen-enriched porous carbon fibers as supercapacitor electrode materials[J].Chemical Industry and Engineering,2014,31(3):34-38. | |
[35] | MA Guixuan, NING Guoqing, WEI Qiang.S-doped carbon materials:Synthesis,properties and applications[J].Carbon,2022,195:328-340. |
[36] | NOH B.Fabrication and empirical analysis of graphene dispersion/activated carbon on conductive networks in porous graphite felt supercapacitor[J].Journal of Energy Storage,2020,28:101264. |
[37] | CUI Lifeng, JI Min, MAO Lihao,et al.Ni-seeded growth of carbon nanotubes on graphite felt for high-performance supercapacitors[J].Journal of the Electrochemical Society,2016,163(9):A2017-A2021. |
[38] | 王赫,王洪杰,赵紫奕,等.多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J].纺织学报,2023,44(6):41-49. |
WANG He, WANG Hongjie, ZHAO Ziyi,et al.Design and electrochemical properties of porous and interconnected carbon nanofiber electrode[J].Journal of Textile Research,2023,44(6):41-49. | |
[39] | GUO Xugang, FACCHETTI A.The journey of conducting polymers from discovery to application[J].Nature Materials,2020,19(9):922-928. |
[40] | CHEN Yashi, YIN Zhuo, HUANG Danlian,et al.Uniform polypyrrole electrodeposition triggered by phytic acid-guided interface engineering for high energy density flexible supercapacit-or[J].Journal of Colloid and Interface Science,2022,611:356- 365. |
[41] | WANG Guanwen, FENG Chunhua.Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell[J].Polymers,2017,9(6):220. |
[42] | 王赫,王洪杰,白伟康,等.碳纤维织物/聚吡咯复合电极的设计与电化学性能研究[J].化工新型材料,2022,50(10):124- 129. |
WANG He, WANG Hongjie, BAI Weikang,et al.Design and electrochemical performance of CF/PPy composite electrode[J].New Chemical Materials,2022,50(10):124-129. | |
[43] | LIU Yu, WANG Wei, XU Xiaomin,et al.Recent advances in anion-doped metal oxides for catalytic applications[J].Journal of Materials Chemistry A,2019,7(13):7280-7300. |
[44] | ABDELRAHIM A M, EL-MOGHNY M G ABD, EL-SHAKRE M E,et al.High mass loading MnO2/graphite felt electrode with marked stability over a wide potential window of 1.9 V for supercapacitor application[J].Journal of Energy Storage,2023,57:106218. |
[45] | ACHOUR W, YNINEB F, HADJERSI T,et al.Hydrothermal deposition of urchin-like NiCo2O4 on carbon felt as performed flexible electrodes for supercapacitors[J].Journal of Applied Electrochemistry,2023,53(7):1405-1419. |
[46] | SHEN Ping, WANG Zhiyu, YANG Chunming,et al.Enhanced electrochemical property of graphite felt@Co2(OH)2CO3 via Ni-P electrodeposition for flexible supercapacitors[J].Electrochimica Acta,2018,283:1568-1577. |
[47] | ABDELRAHIM A M, EL-MOGHNY M G A, EL-SHAKRE M E,et al.Tailor-designed Ni-Co binary hydroxide electrodes for boosted supercapacitor applications:Smart selection of additiv- es[J].Electrochimica Acta,2021,378:137991. |
[48] | 成丽媛,屈芸,赵鑫,等.MXene修饰碳纤维电极的制备及其超级电容器性能研究[J].功能材料,2022,53(5):5039-5047,5065. |
CHENG Liyuan, QU Yun, ZHAO Xin,et al.Preparation of MXene modified carbon fiber electrode and study on supercapacitor performance[J].Journal of Functional Materials,2022,53(5):5039-5047,5065. | |
[49] | 王玖,吴南石,刘涛,等.用于超级电容器的锰钴氧化物/碳纤维材料[J].物理化学学报,2020,36(7):31-39. |
WANG Jiu, WU Nanshi, LIU Tao,et al.MnCo oxides supported on carbon fibers for high-performance supercapacitors[J].Acta Physico-Chimica Sinica,2020,36(7):31-39. | |
[50] | WANG Zhiyu, SHEN Miao, LIU Tiancheng,et al.Self-supported hierarchical bead-chain graphite felt@FePO4@polyaniline:A flexible electrode for all-solid-state supercapacitors with ultrahigh energy density[J].Chemical Engineering Journal,2019,361:342-352. |
[51] | ZHANG Wenjing, YOU Mingyu, YAN Xuehua,et al.Self-growing graphite felt/vanadium pentoxide/polyindole ternary composite as binder-free electrode for supercapacitor with 1.8 V operating potential window and excellent electrochemical performan-ce[J].Applied Surface Science,2022,598:153780. |
[52] | ZHANG Wei, WU Weihong, QU Hongqiang,et al.Hierarchical composite of Co2+ doped polyaniline/graphite felt for supercapacitor[J].Journal of Materials Science:Materials in Electronics,2017,28(24):18735-18744. |
[53] | HE Mingping, ZHENG Yuying, DU Qifeng.Three-dimensional polypyrrole/MnO2 composite networks deposited on graphite felt as free-standing electrode for supercapacitors[J].Materials Letters,2013,104:48-52. |
[54] | WEN Jianfeng, XU Bingang, ZHOU Jinyun,et al.3D patternable supercapacitors from hierarchically architected porous fiber composites for wearable and waterproof energy storage[J].Small,2019,15(25):1901313. |
[55] | RAMADAS A, DINESH A, ANANTHA M S,et al.Functionalized graphene-MoO2 frameworks:An efficient electrocatalyst for iron-based redox flow battery and supercapacitor application with enhanced electrochemical performances[J].Journal of Physics and Chemistry of Solids,2022,171:110990. |
[1] | 于盼盼, 吴宗金, 吴浪, 杨毅, 林倩, 潘红艳. 磷酸-硫酸协同制备木屑基碳材料及其电化学性能研究[J]. 无机盐工业, 2025, 57(4): 79-88. |
[2] | 张飞刚, 刘中利. CuO/g-C3N4复合材料在有机染料降解和超级电容器中的应用研究[J]. 无机盐工业, 2025, 57(1): 129-136. |
[3] | 张岩岩, 李东红, 刘永鹤, 张阳, 康乐, 王毅. 填料氧化铝的表面处理研究[J]. 无机盐工业, 2025, 57(1): 77-82. |
[4] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
[5] | 吴晴晴, 许雪棠, 王凡. 高负载锌钴基碱式碳酸盐电极材料的电容性能研究[J]. 无机盐工业, 2024, 56(7): 46-54. |
[6] | 杨恩, 申红艳, 刘有智. 硅聚醚原位改性超细氢氧化镁的制备[J]. 无机盐工业, 2024, 56(4): 42-49. |
[7] | 邓寅祥, 陈朝轶, 王仕愈, 高莹雪, 彭爽. 槽电压对CaCl2基熔盐电化学转化CO2制备碳材料的影响[J]. 无机盐工业, 2024, 56(1): 40-46. |
[8] | 王建芳, 杨和平, 李凯斌, 丛世强, 张柏洁, 郭珊. C3N4/MnCo2S4复合材料的制备及其电容性能研究[J]. 无机盐工业, 2023, 55(7): 70-74. |
[9] | 许雪棠, 王煦凯, 张申鹤, 黄美香, 农舒柳, 许诺. 偏钒酸根掺杂的NiCo-LDH电极的制备及性能研究[J]. 无机盐工业, 2023, 55(5): 52-58. |
[10] | 张谌虎, 马毅, 朱山, 陈鹏, 王成勇, 李子文. 煤矸石螯合改性后对选矿废水中重金属离子吸附研究[J]. 无机盐工业, 2023, 55(4): 97-103. |
[11] | 刘雪霆, 毛凌峰, 胡芸, 彭溪, 樊雪梅, 陈严磊, 刘文魁. 分散剂和超剪切对二氧化硅的协同分散作用[J]. 无机盐工业, 2023, 55(3): 71-77. |
[12] | 田朋, 徐金钢, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 纳米氧化铝浆料制备及用于改性锂电池正极材料[J]. 无机盐工业, 2023, 55(12): 43-49. |
[13] | 武鲁明, 于海斌, 王亚权. 多孔碳基非贵金属氧还原电催化剂研究进展[J]. 无机盐工业, 2023, 55(10): 13-23. |
[14] | 蒋甜甜,许雪棠,王凡. 卤离子调控的镍钴基电极材料生长及电容影响研究[J]. 无机盐工业, 2022, 54(8): 66-73. |
[15] | 梁朝,李春全,孙志明,郑水林. 新型有机改性剂对重质碳酸钙的表面改性效果及机理[J]. 无机盐工业, 2022, 54(7): 70-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|