无机盐工业 ›› 2023, Vol. 55 ›› Issue (12): 43-49.doi: 10.19964/j.issn.1006-4990.2023-0062
田朋1,2(), 徐金钢1, 徐前进2, 刘坤吉2, 庞洪昌1, 宁桂玲1
收稿日期:
2023-02-10
出版日期:
2023-12-10
发布日期:
2023-12-14
作者简介:
田朋(1983— ),博士,副教授,主要研究方向是氧化铝精细化学品的开发与工业化基础;Email:tianpeng@dlut.edu.cn。
基金资助:
TIAN Peng1,2(), XU Jingang1, XU Qianjin2, LIU Kunji2, PANG Hongchang1, NING Guiling1
Received:
2023-02-10
Published:
2023-12-10
Online:
2023-12-14
摘要:
为了开发更为简单、高效制备氧化铝改性正极材料的方法,提升锂电池正极材料的倍率和循环性能,以聚丙烯酸铵(PAANH4)为分散剂制备纳米氧化铝浆料,并在锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2表面包覆纳米氧化铝。通过实验发现,PAANH4添加量为4%(PAANH4占氧化铝的质量分数)、球磨时间为8 h,所得纳米氧化铝粒径较小且均匀。将此纳米氧化铝浆料应用于锂离子电池正极材料改性,氧化铝的加入不改变正极材料的表面形貌、颗粒尺寸和晶体结构。在电化学性能测试中,发现在氧化铝包覆量为0.3%(质量分数,下同)时,获得较优倍率性能,在氧化铝包覆量为0.5%时,获得较优的循环稳定性能。1C倍率下,未包覆和氧化铝包覆量为0.5%的正极材料循环100次,其容量保持率分别为75.61%和84.93%。
中图分类号:
田朋, 徐金钢, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 纳米氧化铝浆料制备及用于改性锂电池正极材料[J]. 无机盐工业, 2023, 55(12): 43-49.
TIAN Peng, XU Jingang, XU Qianjin, LIU Kunji, PANG Hongchang, NING Guiling. Preparation of nano-alumina slurry and its application in modifying lithium-ion battery cathode material[J]. Inorganic Chemicals Industry, 2023, 55(12): 43-49.
1 |
ZHAO Shuoqing, GUO Ziqi, YAN Kang, et al. Towards high-energy-density lithium-ion batteries:Strategies for developing high-capacity lithium-rich cathode materials[J]. Energy Storage Materials, 2021, 34:716-734.
doi: 10.1016/j.ensm.2020.11.008 |
2 |
SHAFIQ S, IRSHAD U BIN, AL-MUHAINI M, et al. Reliability evaluation of composite power systems:Evaluating the impact of full and plug-in hybrid electric vehicles[J]. IEEE Access, 2020, 8:114305-114314.
doi: 10.1109/ACCESS.2020.3003369 |
3 |
EL-HENDAWI M, WANG Zhanle, PARANJAPE R, et al. Electric vehicle charging model in the urban residential sector[J]. Energies, 2022, 15(13):4901.
doi: 10.3390/en15134901 |
4 |
WU Weitiao, LIN Yue, LIU Ronghui, et al. Online EV charge scheduling based on time-of-use pricing and peak load minimization:Properties and efficient algorithms[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1):572-586.[LinkOut]
doi: 10.1109/TITS.2020.3014088 |
5 |
OR T, GOURLEY S W D, KALIYAPPAN K, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles:Current status and future outlook[J]. Carbon Energy, 2020, 2(1):6-43.
doi: 10.1002/cl2.v2.1 |
6 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
doi: 10.1021/ja3091438 |
7 |
ZHAO Shuoqing, YAN Kang, ZHANG Jinqiang, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2021, 60(5):2208-2220.
doi: 10.1002/anie.v60.5 |
8 | LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie(International Ed.in English), 2020, 59(7):2578-2605. |
9 |
ZHOU Dingyanyan, GUO Xiaotian, ZHANG Qinyi, et al. Nickel-based materials for advanced rechargeable batteries[J]. Advanced Functional Materials, 2022, 32(12):2107928.
doi: 10.1002/adfm.v32.12 |
10 | YU Haifeng, WANG Shouliang, HU Yanjie, et al. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability[J]. Green Energy & Environment, 2022, 7(2):266-274. |
11 |
HU Qiao, HE Yufang, REN Dongsheng, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V[J]. Nano Energy, 2022, 96:107123.
doi: 10.1016/j.nanoen.2022.107123 |
12 |
KIM H K, KANG H S, SANTHOSHKUMAR P, et al. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 with perovskite LaFeO3 for high voltage cathode materials[J]. RSC Advances, 2021, 11(35):21685-21694.
doi: 10.1039/D1RA00857A |
13 |
WOOD D L, WOOD M, LI Jianlin, et al. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries[J]. Energy Storage Materials, 2020, 29:254-265.
doi: 10.1016/j.ensm.2020.04.036 |
14 | AMIN R, MURALIDHARAN N, PETLA R K, et al. Research advances on cobalt-free cathodes for Li-ion batteries-the high voltage LiMn1.5Ni0.5O4 as an example[J]. Journal of Power Sources, 2020,467. Doi:10.1016/j.jpowsour.2020.228318 . |
15 |
NISAR U, MURALIDHARAN N, ESSEHLI R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials, 2021, 38:309-328.
doi: 10.1016/j.ensm.2021.03.015 |
16 | 徐前进, 徐金钢, 田朋, 等. 氧化铝包覆锂离子电池正极材料的研究进展[J]. 无机盐工业, 2023, 55(1):46-55,117. |
XU Qianjin, XU Jingang, TIAN Peng, et al. Research progress of alumina coated cathode materials for lithium-ion batteries[J]. Inorganic Chemicals Industry, 2023, 55(1):46-55,117. | |
17 |
MA Ben, HUANG Xiao, LIU Zhaofeng, et al. Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0.6Co0.2Mn0.2O2 cathode materials for the high-performance lithium-ion batteries[J]. Journal of Materials Science, 2022, 57(4):2857-2869.
doi: 10.1007/s10853-021-06726-z |
18 |
LI Yan, LIU Xiang, REN Dongsheng, et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety[J]. Nano Energy, 2020, 71:104643.
doi: 10.1016/j.nanoen.2020.104643 |
19 |
LI Yunyan, LI Xifei, HU Junhua, et al. ZnO interface modified LiNi0.6Co0.2Mn0.2O2 toward boosting lithium storage[J]. Energy & Environmental Materials, 2020, 3(4):522-528.
doi: 10.1002/eem2.v3.4 |
20 |
WEI Jian, LIANG Di, JI Yuxuan, et al. Enhanced electrochemical performance of cobalt oxide layers coated LiNi0.8Co 0.1Mn0.1O2by polyvinylpyrrolidone-assisted method cathode for Li-ion batteri-es[J]. Journal of Colloid and Interface Science, 2022, 616:520- 531.
doi: 10.1016/j.jcis.2022.02.095 pmid: 35228048 |
21 |
JUNG H, PARK W, HOLDER J, et al. Electrochemical properties of high nickel content Li(Ni0.7Co0.2Mn0.1)O2 with an alumina thin-coating layer as a cathode material for lithium ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10):6505-6511.
doi: 10.1166/jnn.2020.18588 |
22 |
SUN Hao, REN Yurong, LIU Zhen, et al. Enhanced electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 coated with Al2O3 nano-film[J]. Vacuum, 2021, 183:109757.
doi: 10.1016/j.vacuum.2020.109757 |
23 |
HERZOG M J, ESKEN D, JANEK J. Improved cycling performance of high-nickel NMC by dry powder coating with nanostructured fumed Al2O3,TiO2,and ZrO2:A comparison[J]. Batteries & Supercaps, 2021, 4(6):1003-1017.
doi: 10.1002/batt.v4.6 |
24 | YU Han, HE Xiaoqing, LIANG Xinhua. AlF3-Al2O3 ALD thin-film-coated Li1.2Mn0.54Co0.13Ni0.13O2 particles for lithium-ion batteries:Long-term protection[J]. ACS Applied Materials & Interfaces, 2022, 14(3):3991-4003. |
25 |
KIM Y J, KIM H, KIM B, et al. Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating[J]. Chemistry of Materials, 2003, 15(7):1505-1511.
doi: 10.1021/cm0201403 |
26 | 胡继林, 刘琼, 罗祎格, 等. 球磨时间及测试条件对氧化铝粉体粒度分析的影响[J]. 无机盐工业, 2017, 49(4):64-67. |
HU Jilin, LIU Qiong, LUO Yige, et al. Effects of milling time and testing conditions on particle size analysis of alumina powde-rs[J]. Inorganic Chemicals Industry, 2017, 49(4):64-67. | |
27 | 李仲谨, 王芬, 魏红, 等. 聚丙烯酸铵对氧化铝料浆分散行为的研究[J]. 陶瓷, 2002(5):27-30. |
28 |
CHEN Gang, PENG Biyou, HAN Rui, et al. A robust carbon coating strategy toward Ni-rich lithium cathodes[J]. Ceramics International, 2020, 46(13):20985-20992.
doi: 10.1016/j.ceramint.2020.05.160 |
29 |
YANG Chengsheng, LI Yuyu, ZHANG Xuanxuan, et al. Enhanced cyclic stability of LiNi0.8Co0.1Mn0.1O2(NCM811) by AlF3 coating via atomic layer deposition[J]. Ionics, 2022, 28(10):4547-4554.
doi: 10.1007/s11581-022-04691-4 |
30 |
陈良丹, 邹伟, 吴亮, 等. 纳米Al2O3包覆富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2的性能研究[J]. 高等学校化学学报, 2020, 41(6):1329-1336.
doi: 10.7503/cjcu20190719 |
CHEN Liangdan, ZOU Wei, WU Liang, et al. Nano-Al2O3 coated Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 for highly improved lithium-ion batteries[J]. Chemical Journal of Chinese Universities, 2020, 41(6):1329-1336.
doi: 10.7503/cjcu20190719 |
|
31 |
KIMURA N, SEKI E, TOOYAMA T, et al. STEM-EELS analysis of improved cycle life of lithium-ion cells with Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode active material[J]. Journal of Alloys and Compounds, 2021, 869:159259.
doi: 10.1016/j.jallcom.2021.159259 |
32 | RAMASAMY H V, SINHA S, PARK J, et al. Enhancement of electrochemical activity of Ni-rich LiNi0.8Mn 0.1Co0.1O2by precisely controlled Al2O3 nanocoatings via atomic layer depositi-on[J]. Journal of Electrochemical Science and Technology, 2019, 10(2):196-205. |
33 | ZHANG Hailin, XU Jiaqiang, ZHANG Jiujun. Surface-coated LiNi0.8Co0.1Mn0.1O2(NCM811) cathode materials by Al2O3,ZrO2,and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries[J]. Frontiers in Materials, 2019,6. Doi:10.3389/fmats.2019.00309 . |
34 |
KIM J H, PARK J S, CHO S H, et al. Stabilizing the surface of Ni-rich cathodes via facing-target sputtering for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(47):25009-25018.
doi: 10.1039/D2TA07322F |
35 |
CAO Guolin, JIN Zhuomin, ZHU Jie, et al. A green Al2O3 metal oxide coating method for LiNi0.5Co0.2Mn0.3O2 cathode material to improve the high voltage performance[J]. Journal of Alloys and Compounds, 2020, 832:153788.
doi: 10.1016/j.jallcom.2020.153788 |
36 | DONG Mingxia, WANG Zhixing, LI Hangkong, et al. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11):10199-10205. |
37 | ZHU Wenchang, HUANG Xue, LIU Tingting, et al. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges[J]. Coatings, 2019, 9(2). Doi:10.3390/coatings9020092 . |
38 |
WU Yingqiang, LI Mengliu, WAHYUDI W, et al. Performance and stability improvement of layered NCM lithium-ion batteries at high voltage by a microporous Al2O3 sol-gel coating[J]. ACS Omega, 2019, 4(9):13972-13980.
doi: 10.1021/acsomega.9b01706 pmid: 31497715 |
39 |
SHI Yang, ZHANG Minghao, QIAN Danna, et al. Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Electrochimica Acta, 2016, 203:154-161.
doi: 10.1016/j.electacta.2016.03.185 |
40 |
ZHENG Lituo, HATCHARD T D, OBROVAC M N. A high-quality mechanofusion coating for enhancing lithium-ion battery cathode material performance[J]. MRS Communications, 2019, 9(1):245-250.
doi: 10.1557/mrc.2018.209 |
41 | ZHAI Haowei, GONG Tianyao, XU Bingqing, et al. Stabilizing polyether electrolyte with a 4 V metal oxide cathode by nanoscale interfacial coating[J]. ACS Applied Materials & Interfaces, 2019, 11(32):28774-28780. |
42 | 冯耀华. 高镍型锂离子电池正极材料LiNi0 .8Co 0.1Mn0.1O2制备及改性[D]. 兰州: 兰州理工大学,2020. |
FENG Yaohua. Synthesis and modification of LiNi 0.8Co0.1Mn0. 1O2 rich nickel cathode materials for lithium-ion batteries[D]. Lanzhou: Lanzhou University of Technology, 2020. |
[1] | 杨恩, 申红艳, 刘有智. 硅聚醚原位改性超细氢氧化镁的制备[J]. 无机盐工业, 2024, 56(4): 42-49. |
[2] | 周海涛, 温承钦, 郑玲, 孙洁. 金属锂电池负极界面氮化硼修饰膜的研究[J]. 无机盐工业, 2024, 56(4): 85-89. |
[3] | 刘德新, 马腾跃, 安金玲, 刘进荣, 何伟艳. 锰基钠离子电池正极材料设计及电化学性能研究[J]. 无机盐工业, 2024, 56(3): 51-55. |
[4] | 李亚广, 韩东战, 齐利娟. 废旧锂离子电池预处理及电解液回收技术研究现状[J]. 无机盐工业, 2024, 56(2): 1-10. |
[5] | 周煌, 胡晓萍, 任稳, 曹鑫鑫. 硫掺杂Na3(VOPO4)2F正极材料的制备及储钠性能[J]. 无机盐工业, 2024, 56(2): 30-37. |
[6] | 冯准. B/Al/Zr协同策略改善高镍单晶正极材料高温稳定性[J]. 无机盐工业, 2023, 55(8): 59-64. |
[7] | 于惠, 王榆彬, 廖折军, 杨云广. 废旧三元锂离子动力电池循环再生利用工艺概述[J]. 无机盐工业, 2023, 55(7): 32-37. |
[8] | 陆钧皓. 退役三元动力锂电池全元素循环再利用工艺研究[J]. 无机盐工业, 2023, 55(6): 92-103. |
[9] | 朱志红, 朱永芳. 硅掺杂锰酸锂的自蔓延燃烧制备及其性能研究[J]. 无机盐工业, 2023, 55(5): 66-70. |
[10] | 张谌虎, 马毅, 朱山, 陈鹏, 王成勇, 李子文. 煤矸石螯合改性后对选矿废水中重金属离子吸附研究[J]. 无机盐工业, 2023, 55(4): 97-103. |
[11] | 刘雪霆, 毛凌峰, 胡芸, 彭溪, 樊雪梅, 陈严磊, 刘文魁. 分散剂和超剪切对二氧化硅的协同分散作用[J]. 无机盐工业, 2023, 55(3): 71-77. |
[12] | 彭晨熹, 刘军. 钠离子电池层状过渡金属氧化物正极材料的研究进展[J]. 无机盐工业, 2023, 55(10): 1-12. |
[13] | 唐迪,王俊雄,陈稳,季冠军,马骏,周光敏. 退役锂离子电池正极材料直接回收的研究现状和展望[J]. 无机盐工业, 2023, 55(1): 15-25. |
[14] | 周诗雨,何婷,付彤彤,郭子睿,顾帅,于建国. 退役锂离子电池湿法回收生命周期和经济评价[J]. 无机盐工业, 2023, 55(1): 26-32. |
[15] | 徐前进,徐金钢,田朋,刘坤吉,高婷婷,宁桂玲. 氧化铝包覆锂离子电池正极材料的研究进展[J]. 无机盐工业, 2023, 55(1): 46-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|