无机盐工业 ›› 2025, Vol. 57 ›› Issue (4): 1-10.doi: 10.19964/j.issn.1006-4990.2024-0412
• 综述与专论 • 下一篇
收稿日期:
2024-07-19
出版日期:
2025-04-10
发布日期:
2024-08-28
通讯作者:
李杰飞(1991— ),女,博士,讲师,主要研究方向为过渡金属催化剂在电催化生物质转化方面的应用;E-mail:lijf@sut.edu.cn。作者简介:
白一彤(2002— ),女,学士,主要研究方向为电催化甘油氧化;E-mail:15042499795@163.com。
基金资助:
BAI Yitong(), SONG Mingyang, LI Jiefei(
)
Received:
2024-07-19
Published:
2025-04-10
Online:
2024-08-28
摘要:
甘油作为生物柴油生产过程中的副产物,价格低廉且储量丰富,将其转化为高附加值精细化学品是缓解当前资源、环境等问题的有效途径之一。电催化甘油氧化反应(GEOR)因无需氧化剂且阴极产生清洁能源H2等优点而极具应用前景;但贵金属催化剂的高成本和稀缺性限制其商业化应用。因此,亟需开发高效非贵金属催化剂以替代贵金属催化剂。在简单介绍甘油氧化机理的基础上,对近年来过渡金属基GEOR催化剂的研究进展进行综述,并重点梳理了不同催化剂设计策略对甘油氧化性能的提升作用,包括掺杂工程、合金策略、异质结构筑、复合工程和晶相调节等。最后,对过渡金属基催化剂在GEOR中所面临的挑战进行展望。
中图分类号:
白一彤, 宋明洋, 李杰飞. 非贵金属基催化剂用于甘油电氧化的研究进展[J]. 无机盐工业, 2025, 57(4): 1-10.
BAI Yitong, SONG Mingyang, LI Jiefei. Research progress of non-noble metal-based catalysts for electrooxidation of glycerol[J]. Inorganic Chemicals Industry, 2025, 57(4): 1-10.
图3
合金催化剂的表征及电化学性能图a—Ni@CF、NiCu@CF、CuNi@CF和Ni85%Cu15%@CF电极的XRD谱图[43];b—0.6 V(vs.SCE)下NiCu@CF、CuNi@CF、Ni@CF和Cu@CF电极的计时安培曲线[43];c—0.6 V(vs.SCE)下Ni85%Cu15%@CF、Cu@CF和Ni@CF电极的计时安培曲线[43];d—不同催化剂在添加1 mol/L KOH和0.1 mol/L GLY条件下的甘油阳极氧化活性比较(iR校正),扫描速率为2 mV/s[44];e—不同电压下的甲酸FEs[44];f—CoNiCuMnMo-NPs/CC在50 mA/cm2电流密度下的长期稳定性测试[44]。
[1] | AMBAT I, SRIVASTAVA V, SILLANPÄÄ M.Recent advancement in biodiesel production methodologies using various feedstock:A review[J].Renewable and Sustainable Energy Reviews,2018,90:356-369. |
[2] | BUDŽAKI S, MILJIĆ G, TIŠMA M,et al.Is there a future for enzymatic biodiesel industrial production in microreactors?[J].Applied Energy,2017,201:124-134. |
[3] | ALMENA A, BUENO L, DÍEZ M,et al.Integrated biodiesel facilities:Review of glycerol-based production of fuels and chemicals[J].Clean Technologies and Environmental Policy,2018,20(7):1639-1661. |
[4] | LI Jiefei, LI Zhenyu, ZHENG Zexuan,et al.Tuning the product selectivity toward the high yield of glyceric acid in Pt-CeO2/CNT electrocatalyzed oxidation of glycerol[J].ChemCatChem,2022,14(16):e202200509. |
[5] | ZHANG Xueqiong, ZHOU Dan, WANG Xiaojing,et al.Overcoming the deactivation of Pt/CNT by introducing CeO2 for selective base-free glycerol-to-glyceric acid oxidation[J].ACS Catalysis,2020,10(6):3832-3837. |
[6] | GUSCHAKOWSKI M, SCHRÖDER U.Direct and indirect electrooxidation of glycerol to value-added products[J].ChemSusChem,2021,14(23):5216-5225. |
[7] | SKRZYŃSKA E, WONDOŁOWSKA-GRABOWSKA A, CAPRON M,et al.Crude glycerol as a raw material for the liquid phase oxidation reaction[J].Applied Catalysis A:General,2014,482:245- 257. |
[8] | AN Zhe, MA Honghao, HAN Hongbo,et al.Insights into the multiple synergies of supports in the selective oxidation of glycerol to dihydroxyacetone:Layered double hydroxide supported Au[J].ACS Catalysis,2020,10(21):12437-12453. |
[9] | LI Jiefei, JIANG Kunhong, BAI Suohong,et al.High productivity of tartronate from electrocatalytic oxidation of high concentration glycerol through facilitating the intermediate conversion[J].Applied Catalysis B:Environmental,2022,317:121784. |
[10] | KIM D, OH L S, TAN Yingchuan,et al.Enhancing glycerol conversion and selectivity toward glycolic acid via precise nanostructuring of electrocatalysts[J].ACS Catalysis,2021,11(24):14926-14931. |
[11] | TEREKHINA I, WHITE J, CORNELL A,et al.Electrocatalytic oxidation of glycerol to value-added compounds on Pd nanocrystals[J].ACS Applied Nano Materials,2023,6(13):11211-11220. |
[12] | YANG Tianpei, SHEN Yi.Coupling glycerol conversion with hydrogen production using alloyed electrocatalysts[J].Langmuir,2023,39(36):12855-12864. |
[13] | KATRYNIOK B, KIMURA H, SKRZYŃSKA E,et al.Selective catalytic oxidation of glycerol:Perspectives for high value chemicals[J].Green Chemistry,2011,13(8):1960-1979. |
[14] | MORALES D M, JAMBREC D, KAZAKOVA M A,et al.Electrocatalytic conversion of glycerol to oxalate on Ni oxide nanoparti-cles-modified oxidized multiwalled carbon nanotubes[J].ACS Catalysis,2022,12(2):982-992. |
[15] | HAN Xiaotong, SHENG Hongyuan, YU Chang,et al.Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts[J].ACS Catalysis,2020,10(12):6741-6752. |
[16] | VO T G, HO P Y, CHIANG C Y.Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide[J].Applied Catalysis B:Environmental,2022,300:120723. |
[17] | HUANG Xin, ZOU Yu, JIANG Jiang.Electrochemical oxidation of glycerol to dihydroxyacetone in borate buffer:Enhancing activity and selectivity by borate-polyol coordination chemistry[J].ACS Sustainable Chemistry & Engineering,2021,9(43):14470-14479. |
[18] | ZHANG Jiali, SHEN Yi, LI Hongying.Electrolysis of glycerol by non-noble metal hydroxides and oxides[J].ACS Applied Energy Materials,2023,6(10):5508-5518. |
[19] | XIA Zhongcheng, MA Chongyang, FAN Yun,et al.Vacancy optimized coordination on nickel oxide for selective electrocatalytic oxidation of glycerol[J].ACS Catalysis,2024,14(3):1930-1938. |
[20] | WU Liyun, WU Qilong, HAN Yun,et al.Strengthening the synergy between oxygen vacancies in electrocatalysts for efficient glycerol electrooxidation[J].Advanced Materials,2024,36(26):e2401857. |
[21] | DAI Chencheng, SUN Libo, LIAO Hanbin,et al.Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles[J].Journal of Catalysis,2017,356:14-21. |
[22] | PURUSHOTHAMAN R K P, VAN HAVEREN J, VAN ES D S,et al.An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support[J].Applied Catalysis B:Environmental,2014,147:92- 100. |
[23] | ZHANG Chen, WANG Tao, LIU Xiao,et al.Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution[J].Chinese Journal of Catalysis,2016,37(4):502-509. |
[24] | LAM C H, BLOOMFIELD A J, ANASTAS P T.A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst[J].Green Chemistry,2017,19(8):1958-1968. |
[25] | ZHANG An, LIANG Yongxiang, ZHANG Han,et al.Doping regulation in transition metal compounds for electrocatalysis[J].Chemical Society Reviews,2021,50(17):9817-9844. |
[26] | HOUACHE M S E, HUGHES K, SAFARI R,et al.Modification of nickel surfaces by bismuth:Effect on electrochemical activity and selectivity toward glycerol[J].ACS Applied Materials & Interfaces,2020,12(13):15095-15107. |
[27] | WANG Yeli, ZHU Yuquan, XIE Zhiheng,et al.Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4 [J].ACS Catalysis,2022,12(19):12432-12443. |
[28] | LUO Wenshu, TIAN Han, LI Qin,et al.Controllable electron distribution reconstruction of spinel NiCo2O4 boosting glycerol oxidation at elevated current density[J].Advanced Functional Materials,2024,34(3):2306995. |
[29] | XU You, LIU Tiantian, SHI Keke,et al.Iridium-incorporated Co3O4 with lattice expansion for energy-efficient green hydrogen production coupled with glycerol valorization[J].Chemical Communications,2023,59(13):1817-1820. |
[30] | 王烨,葛瑞翔,刘翔,等.一种阴离子浸出策略合成金属羟基氧化物用于电催化甘油氧化[J].物理化学学报,2024,40(7):43-46. |
WANG Ye, GE Ruixiang, LIU Xiang,et al.An anion leaching strategy towards metal oxyhydroxides synthesis for electrocatalytic oxidation of glycerol[J].Acta Physico-Chimica Sinica,2024,40(7):43-46. | |
[31] | GOETZ M K, USMAN E, CHOI K S.Understanding and suppressing C-C cleavage during glycerol oxidation for C3 chemical production[J].ACS Catalysis,2023,13(24):15758-15769. |
[32] | WAN Haibo, DAI Chencheng, JIN Liujun,et al.Electro-oxidation of glycerol to high-value-added C1-C3 products by iron-substituted spinel zinc cobalt oxides[J].ACS Applied Materials & Interfaces,2022,14(12):14293-14301. |
[33] | ZHONG Zhiyang, LI Menglu, WANG Jiaojie,et al.Co-doped Ni-Fe spinels for electrocatalytic oxidation over glycerol[J].International Journal of Hydrogen Energy,2022,47(29):13933-13945. |
[34] | PEI Yuhou, PI Zhenfeng, ZHONG Heng,et al.Glycerol oxidation-assisted electrochemical CO2 reduction for the dual production of formate[J].Journal of Materials Chemistry A,2022,10(3):1309-1319. |
[35] | FAN Linfeng, JI Yaxin, WANG Genxiang,et al.Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading[J].Journal of Energy Chemistry,2022,72:424-431. |
[36] | TRIPATHI V, JAIN S, KABRA D,et al.Cobalt-doped copper vanadate:A dual active electrocatalyst propelling efficient H2 evolution and glycerol oxidation in alkaline water[J].Nanoscale Advances,2022,5(1):237-246. |
[37] | GARCIA A C, FERREIRA E B, SILVA DE BARROS V V,et al.PtAg/MnO x /C as a promising electrocatalyst for glycerol electro-oxidation in alkaline medium[J].Journal of Electroanalytical Chemistry,2017,793:188-196. |
[38] | MÜRTZ S D, MUSIALEK F, PFÄNDER N,et al.Bimetallic PtCu/C catalysts for glycerol assisted hydrogen evolution in acidic media[J].ChemElectroChem,2023,10(11):e202201114. |
[39] | OLIVEIRA V L, MORAIS C, SERVAT K,et al.Glycerol oxidation on nickel based nanocatalysts in alkaline medium:Identification of the reaction products[J].Journal of Electroanalytical Chemistry,2013,703:56-62. |
[40] | OLIVEIRA V L, MORAIS C, SERVAT K,et al.Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium[J].Electrochimica Acta,2014,117:255-262. |
[41] | ZHANG Jiali, SHEN Yi.Electro-oxidation of glycerol into formic acid by nickel-copper electrocatalysts[J].Journal of the Electrochemical Society,2021,168(8):084510. |
[42] | HABIBI B, DELNAVAZ N.Electrooxidation of glycerol on nickel and nickel alloy (Ni-Cu and Ni-Co) nanoparticles in alkaline media[J].RSC Advances,2016,6(38):31797-31806. |
[43] | GHAITH M E, EL-MOGHNY M G ABD, EL-NAGAR G A,et al.Tailor-designed binary Ni-Cu nano dendrites decorated 3D-carbon felts for efficient glycerol electrooxidation[J].RSC Advances,2023,13(2):895-905. |
[44] | FAN Linfeng, JI Yaxin, WANG Genxiang,et al.High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production[J].Journal of the American Chemical Society,2022,144(16):7224-7235. |
[45] | JIA Yi, ZHANG Longzhou, GAO Guoping,et al.A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting[J].Advanced Materials,2017,29(17):1700017. |
[46] | LIU Xuan, FANG Zhongying, TENG Xue,et al.Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts[J].Journal of Energy Chemistry,2022,72:432-441. |
[47] | FENG Yafei, HE Xiaoyue, CHENG Mingyu,et al.Selective adsorption behavior modulation on nickel selenide by heteroatom implantation and heterointerface construction achieves efficient co-production of H2 and formate[J].Small,2023,19(35):2301986. |
[48] | XU Lixiong, YANG Yifan, LI Chenyue,et al.Unveiling the mechanism of electrocatalytic oxidation of glycerol by in situ electrochemical spectroscopy[J].Chemical Engineering Journal,2024,481:148304. |
[49] | MOURDIKOUDIS S, KOSTOPOULOU A, LAGROW A P.Magnetic nanoparticle composites:Synergistic effects and applications[J].Advanced Science,2021,8(12):2004951. |
[50] | DU Jiawei, QIN Yang, DOU Tong,et al.Copper nanoparticles dotted on copper sulfide nanosheets for selective electrocatalytic oxidation of glycerol to formate[J].ACS Applied Nano Materials,2022,5(8):10174-10182. |
[51] | HUANG Zijian, REN Hongji, GUO Jian,et al.High DHA selectivity and low-cost electrode for glycerol oxidation:CuO regulates MnO2 electron density to promote DHA desorption[J].Applied Catalysis B:Environment and Energy,2024,351:123986. |
[52] | BERRY R S, SMIRNOV B M.Phase transitions in various kinds of clusters[J].Physics-Uspekhi,2009,52(2):137-164. |
[53] | CHEN Pengzuo, XU Kun, TAO Shi,et al.Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium[J].Advanced Materials,2016,28(34):7527-7532. |
[54] | VO T G, TSAI P Y, CHIANG C Y.Tuning selectivity and activity of the electrochemical glycerol oxidation reaction by manipulating morphology and exposed facet of spinel cobalt oxides[J].Journal of Catalysis,2023,424:64-73. |
[55] | TRAN G S, VO T G, CHIANG C Y.Earth-abundant manganese oxide nanoneedle as highly efficient electrocatalyst for selective glycerol electro-oxidation to dihydroxyacetone[J].Journal of Catalysis,2021,404:139-148. |
[56] | TRAN G S, VO T G, CHIANG C Y.Operando revealing the crystal phase transformation and electrocatalytic activity correlation of MnO2 toward glycerol electrooxidation[J].ACS Applied Materials & Interfaces,2023,15(18):22662-22671. |
[57] | WANG Changlong, BONGARD H J, YU Mingquan,et al.Highly ordered mesoporous Co3O4 electrocatalyst for efficient,selective,and stable oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J].ChemSusChem,2021,14(23):5199-5206. |
[58] | DU Jiawen, XIE Aijuan, ZHU Shichao,et al.3D flower-like CoNi2S4/polyaniline with high performance for glycerol electrooxidation in an alkaline medium[J].New Journal of Chemistry,2019,43(26):10366-10375. |
[59] | RIZK M R, EL-MOGHNY M G ABD, EL-NAGAR G A,et al.Tailor-designed porous catalysts:Nickel-doped Cu/Cu2O foams for efficient glycerol electro-oxidation[J].ChemElectroChem,2020,7(4):951-958. |
[60] | DONG Lin, CHANG Guanru, FENG Yi,et al.Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis[J].Rare Metals,2022,41(5):1583-1594. |
[61] | WU Jianxiang, LI Jili, LI Yefei,et al.Steering the glycerol electro-reforming selectivity via cation-intermediate interactions[J].Angewandte Chemie(International Ed),2022,61(11):e202113362. |
[1] | 于贺松, 王德喜, 于红蕾, 左茂盛, 李佳志. 射流强化空气氧化法制备电池级磷酸铁[J]. 无机盐工业, 2025, 57(4): 31-36. |
[2] | 任根宽, 罗欣, 朱登磊, 张敏. 固相还原法制备纳米氧化铁热力学分析及其实验研究[J]. 无机盐工业, 2025, 57(4): 73-78. |
[3] | 张艳, 蒋文伟, 叶先宇, 彭小双. 工业氯化钡制备高纯氢氧化钡生产工艺研究[J]. 无机盐工业, 2025, 57(4): 67-72. |
[4] | 王敏锐, 田桂英, 张奥, 葛俊杰, 张蕾, 项军, 唐娜. 铝基锂吸附剂造粒工艺优化及其原卤提锂性能研究[J]. 无机盐工业, 2025, 57(3): 36-42. |
[5] | 史王芳, 张永胜. 混凝土基非金属硼掺杂富氮氮化碳降解NO x 性能研究[J]. 无机盐工业, 2025, 57(3): 116-123. |
[6] | 马铭扬, 陈敏奕, 孙涛, 薛斌. SiO2介导超疏水/超亲油杂化海绵的制备及油/水分离研究[J]. 无机盐工业, 2025, 57(3): 64-70. |
[7] | 罗成玲, 范小凡. 微结构调控催化剂用于尿素氧化反应的研究进展[J]. 无机盐工业, 2025, 57(2): 26-35. |
[8] | 成小强, 马俊, 冯彬, 白立光, 赵晓东. 固定床过氧化氢生产工艺后处理工序的应用探讨[J]. 无机盐工业, 2025, 57(2): 98-104. |
[9] | 孙庆昊, 李克艳, 郭新闻. Pd/ZnIn2S4纳米片光催化苯甲醇氧化耦合产氢的研究[J]. 无机盐工业, 2025, 57(1): 113-119. |
[10] | 韩伟, 宋永明, 刘琪, 徐金陵, 徐荣, 李春全, 殷帅军, 孙志明. 钙盐辅助热活化煤矸石及其活化PMS降解苯并[a]芘性能研究[J]. 无机盐工业, 2025, 57(1): 103-112. |
[11] | 齐国庆, 李通. 工业过氧化氢品质提升方案研究进展[J]. 无机盐工业, 2025, 57(1): 36-41. |
[12] | 邹辽, 马小琳, 李小保, 叶菊娣. 木质素/LDH的制备及增强聚氨酯力学性能的研究[J]. 无机盐工业, 2025, 57(1): 64-70. |
[13] | 张岩岩, 李东红, 刘永鹤, 张阳, 康乐, 王毅. 填料氧化铝的表面处理研究[J]. 无机盐工业, 2025, 57(1): 77-82. |
[14] | 曾一钧, 蒋子文, 蹇成宗, 全学军. 铬铁矿无钙焙烧渣中铬的深度提取研究[J]. 无机盐工业, 2025, 57(1): 90-96. |
[15] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|