1 |
况新亮,刘垂祥,熊朋.锂离子电池产业分析及市场展望[J].无机盐工业,2022,54(8):12-19,32.
|
|
KUANG Xinliang, LIU Chuixiang, XIONG Peng.Industry analysis and market prospect of lithium ion battery[J].Inorganic Chemicals Industry,2022,54(8):12-19,32.
|
2 |
胡倩倩,王清泉,吕少茵,等.高导多孔导电碳材料的合成及其在高能量密度锂硫电池中的应用[J].新能源进展,2023,11(6):519-523.
|
|
HU Qianqian, WANG Qingquan, Shaoyin LÜ,et al.Synthesis and application of carbon material with high conductivity and multiple pores for high-energy lithium sulfur batteries[J].Advances in New and Renewable Energy,2023,11(6):519-523.
|
3 |
HOU Jianhua, TU Xinyue, WU Xiaoge,et al.Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host[J].Chemical Engineering Journal,2020,401:126141.
|
4 |
MOON S, JUNG Y H, JUNG W K,et al.Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries[J].Advanced Materials,2013,25(45):6547-6553.
|
5 |
HAN P, CHUNG S H, MANTHIRAM A.Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium-sulfur batteries[J].Small,2019,15(16):1900690.
|
6 |
DÖRFLER S, ALTHUES H, HÄRTEL P,et al.Challenges and key parameters of lithium-sulfur batteries on pouch cell level[J].Joule,2020,4(3):539-554.
|
7 |
王维坤,王安邦,金朝庆.锂硫电池的实用化挑战[J].储能科学与技术,2020,9(2):593-597.
|
|
WANG Weikun, WANG Anbang, JIN Zhaoqing.Challenges on practicalization of lithium sulfur batteries[J].Energy Storage Science and Technology,2020,9(2):593-597.
|
8 |
ZHAO Meng, LI Boquan, PENG Hongjie,et al.Lithium-sulfur batteries under lean electrolyte conditions:Challenges and opportunities[J].Angewandte Chemie International Edition,2020,59(31):12636-12652.
|
9 |
FAN F Y, CHIANG Y M.Electrodeposition kinetics in Li-S batteries:Effects of low electrolyte/sulfur ratios and deposition surface composition[J].Journal of the Electrochemical Society,2017,164(4):A917-A922.
|
10 |
HE Feng, WU Xiangjiang, QIAN Jiangfeng,et al.Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism[J].Journal of Materials Chemistry A,2018,6(46):23396-23407.
|
11 |
HUANG Feifei, GAO Lujie, ZOU Yiping,et al.Akin solid-solid biphasic conversion of a Li-S battery achieved by coordinated carbonate electrolytes[J].Journal of Materials Chemistry A,2019,7(20):12498-12506.
|
12 |
陈雪.“固—固” 反应硫正极的界面构筑与电化学性能研究[D].武汉:华中科技大学,2022.
|
|
CHEN Xue.Study on interfacial construction and electrochemical properties of “solid-solid”reaction of sulfur cathode[D].Wuhan:Huazhong University of Science and Technology,2022.
|
13 |
ZHANG B, QIN X, LI G R,et al.Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J].Energy & Environmental Science,2010,3(10):1531-1537.
|
14 |
XIN Sen, GU Lin, ZHAO Nahong,et al.Smaller sulfur molecules promise better lithium-sulfur batteries[J].Journal of the American Chemical Society,2012,134(45):18510-18513.
|
15 |
LI Zhen, YUAN Lixia, YI Ziqi,et al.Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J].Advanced Energy Materials,2014,4(7):1301473.
|
16 |
LI Shanshan, JIN Bo, ZHAI Xiaojie,et al.Review of carbon materials for lithium-sulfur batteries[J].ChemistrySelect,2018,3(8):2245-2260.
|
17 |
HU Lei, LU Yue, LI Xiaona,et al.Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte[J].Small,2017,13(11):1603533.
|
18 |
PAN Zhiyong, BRETT D J L, HE Guanjie,et al.Progress and perspectives of organosulfur for lithium-sulfur batteries[J].Advanced Energy Materials,2022,12(8):2103483.
|
19 |
ZHAO Xiaohui, WANG Chonglong, LI Ziwei,et al.Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries:Advances and prospects[J].Journal of Materials Chemistry A,2021,9(35):19282-19297.
|
20 |
WANG Jiulin, YANG Jun, XIE Jiajun,et al.A novel conductive polymer-sulfur composite cathode material for rechargeable lithi-um batteries[J].Advanced Materials,2002,14(13/14):963-965.
|
21 |
DOAN T N L, GHAZNAVI M, ZHAO Yan,et al.Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode[J].Journal of Power Sources,2013,241:61-69.
|
22 |
YU Xianguo, XIE Jingying, YANG Jun,et al.Lithium storage in conductive sulfur-containing polymers[J].Journal of Electroanalytical Chemistry,2004,573(1):121-128.
|
23 |
JIN Zhaoqing, LIU Yonggang, WANG Weikun,et al.A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates[J].Energy Storage Materials,2018,14:272-278.
|
24 |
WANG Wenxi, CAO Zhen, ELIA G A,et al.Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J].ACS Energy Letters,2018,3(12):2899-2907.
|
25 |
PANG Quan, LIANG Xiao, KWOK C Y,et al.Review:The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries[J].Journal of the Electrochemical Society,2015,162(14):A2567-A2576.
|
26 |
YI Yikun, Feng HAI, TIAN Xiaolu,et al.A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion[J].Chemical Engineering Journal,2023,466:143303.
|
27 |
LI Xiang, LIU Dezhong, CAO Ziyi,et al.Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries[J].Journal of Energy Chemistry,2023,84:459-466.
|
28 |
LI Xia, LUSHINGTON A, SUN Qian,et al.Safe and durable high-temperature lithium-sulfur batteries via molecular layer deposited coating[J].Nano Letters,2016,16(6):3545-3549.
|
29 |
LI Xia, BANIS M, LUSHINGTON A,et al.A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J].Nature Communications,2018,9:4509.
|
30 |
CHEN Xue, YUAN Lixia, LI Zhen,et al.Realizing an applicable “solid→solid” cathode process via a transplantable solid electrolyte interface for lithium-sulfur batteries[J].ACS Applied Materials & Interfaces,2019,11(33):29830-29837.
|
31 |
MARKEVICH E, SALITRA G, ROSENMAN A,et al.The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries[J].Journal of Materials Chemistry A,2015,3(39):19873-19883.
|
32 |
LEE J T,EOM K, WU Feixiang,et al.Enhancing the stability of sulfur cathodes in Li-S cells via in situ formation of a solid electrolyte layer[J].ACS Energy Letters,2016,1(2):373-379.
|
33 |
CHEN Xue, JI Haijin, RAO Zhixiang,et al.Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium-sulfur batteries[J].Advanced Energy Materials,2022,12(1):2102774.
|
34 |
ZHU Qiancheng, YE Chun, MAO Deyu.Solid-state electrolytes for lithium-sulfur batteries:Challenges,progress,and strategi-es[J].Nanomaterials,2022,12(20):3612.
|
35 |
YI Jingguang, CHEN Long, LIU Yongchang,et al.High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte[J].ACS Applied Materials & Interfaces,2019,11(40):36774-36781.
|
36 |
WU Jinghua, LIU Sufu, HAN Fudong,et al.Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J].Advanced Materials,2021,33(6):e2000751.
|
37 |
KANNO R, MURAYAMA M.Lithium ionic conductor thio-LISICON:The Li2S-GeS2-P2S5 system[J].Journal of the Electrochemical Society,2001,148(7):A742.
|
38 |
ZHU Pei, YAN Chaoyi, ZHU Jiadeng,et al.Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries[J].Energy Storage Materials,2019,17:220-225.
|
39 |
HAN Qigao, LI Xuelei, SHI Xixi,et al.Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core-shell S@BP2000 nanocomposite[J].Journal of Materials Chemistry A,2019,7(8):3895-3902.
|
40 |
XU Kangli, LIU Xiaojing, LIANG Jianwen,et al.Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J].ACS Energy Letters,2018,3(2):420-427.
|
41 |
SUN Fugen, ZHANG Bo, TANG Hao,et al.Heteroatomic Te x S1- x molecule/C nanocomposites as stable cathode materials in carbonate-based electrolytes for lithium-chalcogen batteries[J].Jo-urnal of Materials Chemistry A,2018,6(21):10104-10110.
|
42 |
LI Shuping, HAN Zhilong, HU Wei,et al.Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelera tor to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism[J].Nano Energy,2019,60:153-161.
|
43 |
CHEN Xin, PENG Linfeng, WANG Lihui,et al.Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J].Nature Communications,2019,10:1021.
|
44 |
LI Xiaona, LIANG Jianwen, ZHANG Kailong,et al.Amorphous S-rich S1- x Se x /C (x≤0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte[J].Energy & Environmental Science,2015,8(11):3181-3186.
|
45 |
XU Guiliang, SUN Hui, LUO Chao,et al.Solid-state lithium/selenium-sulfur chemistry enabled via a robust solid-electrolyte interphase[J].Advanced Energy Materials,2019,9(2):1802235.
|
46 |
LI Shuping, MA Jingqi, ZENG Ziqi,et al.Enhancing the kinetics of lithium-sulfur batteries under solid-state conversion by using tellurium as a eutectic accelerator[J].Journal of Materials Chemistry A,2020,8(6):3405-3412.
|
47 |
SHEN Zeyu, ZHANG Weidong, MAO Shulan,et al.Tailored electrolytes enabling practical lithium-sulfur full batteries via interfacial protection[J].ACS Energy Letters,2021,6(8):2673-2681.
|
48 |
YANG Huijun, QIAO Yu, CHANG Zhi,et al.Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion[J].Angewandte Chemie(International Ed.in English),2021,60(32):17726-17734.
|
49 |
CHEN Jiahang, LU Huichao, ZHANG Xuan,et al.Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery[J].Energy Storage Materials,2022,50:387-394.
|
50 |
HU Jiangkui, YUAN Hong, YANG Shijie,et al.Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries[J].Journal of Energy Chemistry,2022,71:612-618.
|