无机盐工业 ›› 2023, Vol. 55 ›› Issue (6): 27-35.doi: 10.19964/j.issn.1006-4990.2022-0451
收稿日期:
2022-07-25
出版日期:
2023-06-10
发布日期:
2023-06-14
通讯作者:
张晖(1972— ),男,正高级工程师,主要从事磷化工及磷系新材料方面的研究;E-mail:2284149850@qq.com。作者简介:
李恒(1995— ),男,硕士,主要从事磷石膏资源化利用;E-mail:LiHengLiRui@163.com。
基金资助:
LI Heng(), ZHANG Hui(
), ZI Xuemin
Received:
2022-07-25
Published:
2023-06-10
Online:
2023-06-14
摘要:
磷石膏作为主要的工业副产石膏,通过煅烧制备得到建材石膏粉体。归纳了国内外现有磷石膏煅烧工艺特点及利弊,针对现有的炒锅、回转窑、沸腾炉、彼得磨、FC-沸腾炉、锤式粉碎等煅烧工艺存在的产品质量不稳定、可控性差、功能单一、能耗高、投资高等技术及装备问题,提出流化床煅烧工艺。重点介绍了流化床煅烧磷石膏工艺技术具有大型化、流态化、产品多元化、干法净化、绿色环保的特点及技术创新优势。并与目前主流煅烧工艺产品性能指标分析进行对比,得出流化床煅烧磷石膏工艺产品质量稳定性好、可控性强、性能指标优越,必然成为未来磷石膏制备建材石膏粉体的主流技术手段,为中国磷石膏的煅烧资源化利用提供指导价值。
中图分类号:
李恒, 张晖, 资学民. 磷石膏煅烧工艺进展分析[J]. 无机盐工业, 2023, 55(6): 27-35.
LI Heng, ZHANG Hui, ZI Xuemin. Analysis on calcination process progress of phosphogypsum[J]. Inorganic Chemicals Industry, 2023, 55(6): 27-35.
表1
石膏煅烧类型及特点[16-19]
分类依据 | 煅烧类型 | 优势 | 缺陷 | 典型工艺设备 |
---|---|---|---|---|
煅烧 时长 | 低温慢烧 | 相组成稳定,凝结速度慢,标准稠度需水量小 | 传热速度较慢,脱水时间长,生产效率低,能耗高 | 炒锅、间接式回转窑 |
高温快烧 | 一定程度上脱除及稳定杂质,设备投资低、生产效率高 | 易生成无水石膏AⅢ和AⅡ,工艺控制难度较大,建筑石膏质量波动较大 | 气流煅烧、直接式回转窑II型 | |
复合煅烧 | 降低物料温度,实现能源的梯级利用 | 工艺条件控制难度相对较大 | 气流烘干煅烧组合间接加热式沸腾炉(或炒锅) | |
加热 方式 | 直热式 | 设备结构简单、造价低 | 排放尾气温度高,系统能耗大 | 直热式回转窑、彼得磨 |
间接式 | 产品质量稳定,传热热阻小,换热效率高,外排的湿热空气量少、温度低,系统热能可实现梯级利用,降低生产综合能耗 | 设备总体造价高,维修保养复杂,工艺系统长,占地面积大 | 连续炒锅、内加热管式蒸汽回转窑或沸腾煅烧炉 | |
出料 方式 | 连续式 | 产品质量稳定,生产效率高,能耗低 | 工艺控制相比间歇式复杂 | 连续炒锅、沸腾炉 |
间歇式 | 设备操作简单 | 产品质量波动大,生产效率低下,能耗高 | 间歇立式炒锅、间歇式回转窑 | |
物料 特性 | 一步法 | 工艺流程短,操作简单 | 产品质量不稳定,易过烧或欠烧 | 连续式炒锅、回转窑、沸腾炉、锤式烘干机 |
两步法 | 比一步法制得的产品质量稳定 | 工艺控制相对困难 | 气流干燥器组合FC炉、气流干燥器组合沸腾炉 |
1 | DEGIRMENCI N.The using of waste phosphogypsum and natural gypsum in adobe stabilization[J].Construction and Building Materials,2008,22(6):1220-1224. |
2 | RASHAD A M.Phosphogypsum as a construction material[J].Journal of Cleaner Production,2017,166:732-743. |
3 | ZHANG Linchun, ZHANG Ailian, LI Ke,et al.Research on the pretreatment and mechanical performance of undisturbed phosphogypsum[J].Case Studies in Construction Materials,2020,13:e00400. |
4 | HUANG Yongbo, QIAN Jueshi, LU Lingchao,et al.Phosphogypsum as a component of calcium sulfoaluminate cement:Hazardous elements immobilization,radioactivity and performances[J].Journal of Cleaner Production,2020,248:119287. |
5 | CHERNYSH Y, YAKHNENKO O, CHUBUR V,et al.Phosphogypsum recycling:A review of environmental issues,current trends,and prospects[J].Applied Sciences,2021,11(4):1575. |
6 | CAO Wenxiang, YI Wei, LI Jing,et al.A facile approach for large-scale recovery of phosphogypsum:An insight from its performan-ce[J].Construction and Building Materials,2021,309:125190. |
7 | BANDGAR G S, KUMTHEKAR M B, LANDAGE A B.A review of effective utilization of waste phosphogypsum as a building mate-rial[J].International Journal of Engineering Research,2016,5(SP1):277-280. |
8 | CUI Yong, WANG Qiang, XUE Junfeng.Novel foam insulation material produced by calcined phosphogypsum and H2O2 [J].Journal of Materials in Civil Engineering,2020,32(12):04020379. |
9 | LI Xianbo, ZHANG Qin, KE Baolin,et al.Insight into the effect of maleic acid on the preparation of α-hemihydrate gypsum from phosphogypsum in Na2SO4 solution[J].Journal of Crystal Growth,2018,493:34-40. |
10 | ZHI Zhenzhen, HUANG Jian, GUO Yanfei,et al.Effect of chemical admixtures on setting time,fluidity and mechanical properties of phosphorus gypsum based self-leveling mortar[J].KSCE Journal of Civil Engineering,2017,21(5):1836-1843. |
11 | BUMANIS G, ZORICA J, BAJARE D,et al.Technological properties of phosphogypsum binder obtained from fertilizer production waste[J].Energy Procedia,2018,147:301-308. |
12 | LI Xianbo, ZHANG Qin.Dehydration behaviour and impurity change of phosphogypsum during calcination[J].Construction and Building Materials,2021,311:125328. |
13 | GUAN Qingjun, SUI Ying, ZHANG Fang,et al.Preparation of α-calcium sulfate hemihydrate from industrial by-product gypsum:A review[J].Physicochemical Problems of Mineral Processing,2020,57(1):168-181. |
14 | YANG Min, QIAN Jueshi.Activation of anhydrate phosphogypsum by K2SO4 and hemihydrate gypsum[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.,2011,26(6):1103-1107. |
15 | 段爱萍.脱硫石膏煅烧工艺及其砌块的研究与展望[J].河南建材,2013(5):6-9. |
DUAN Aiping.Research and prospect of desulfurization gypsum calcination process and its block[J].Henan Building Materials,2013(5):6-9. | |
16 | 周建中,冯菊莲,周梦文,等.煅烧设备对建筑石膏性能影响的探索研究[J].新型建筑材料,2010,37(6):72-73,91. |
ZHOU Jianzhong, FENG Julian, ZHOU Mengwen,et al.Influence of different calcining devices on building plaster performance[J].New Building Materials,2010,37(6):72-73,91. | |
17 | 彭卓飞,宋小霞.磷石膏生产β型石膏工艺流程的研究[J].硫磷设计与粉体工程,2021(1):35-38,6. |
PENG Zhuofei, SONG Xiaoxia.Study of process flow for production of β type gypsum from phosphogypsum[J].Sulphur Phosphorus & Bulk Materials Handling Related Engineering,2021(1):35-38,6. | |
18 | 闫友静,张贺,于世峰.脱硫石膏煅烧工艺及煅烧设备浅析[J].新型建筑材料,2018,45(2):100-102. |
YAN Youjing, ZHANG He, YU Shifeng.Discussion on FGD gypsum calcination process and calcination equipment[J].New Bu- | |
Materials ilding,2018,45(2):100-102. | |
19 | 赵建国,张应虎,李崇贵,等.国内磷石膏煅烧技术评析[J].云南化工,2013,40(1):20-23. |
ZHAO Jianguo, ZHANG Yinghu, LI Chonggui,et al.Domestic phosphogypsum calcined technical analysis[J].Yunnan Chemical Technology,2013,40(1):20-23. | |
20 | 李玉山.石膏粉煅烧技术与节能工艺设计探索[J].非金属矿,1999,22(3):23-25,9. |
LI Yushan.Exploration of gypsum powder calcination technology and energy-saving process design[J].Non-Metallic Mines,1999,22(3):23-25,9. | |
21 | LUSHNIKOVAN,DVORKINL.Sustainability of gypsum products as a construction material[M]//Sustainability of Construction Materials.Amsterdam:Elsevier,2016:643-681. |
22 | 巴太斌,徐亚中,王利娜,等.磷石膏的改性及煅烧工艺研究综述[J].河南建材,2018(1):22-24. |
BA Taibin, XU Yazhong, WANG Lina,et al.Review on modification and calcination technology of phosphogypsum[J].Henan Building Materials,2018(1):22-24. | |
23 | 李玉山,宋树峰,富丽娥.流态化煅烧石膏技术的进展:FC分室石膏煅烧炉[J].非金属矿,2005,28(6):34-36,49. |
LI Yushan, SONG Shufeng, FU Lie.Development of fluidized calcination technology for gypsum—FC multi-chamber calcinator[J].Non-Metallic Mines,2005,28(6):34-36,49. | |
24 | 冯金煌,江水.磷石膏新型煅烧炉:锤式烘干机[J].磷肥与复肥,2001,16(6):62-63. |
FENG Jinhuang, JIANG Shui.A new type calcinator for phosphogypsum-hammer-swinging rotary dryer[J].Phosphate & Compound Fertilizer,2001,16(6):62-63. | |
25 | 吴佩芝.湿法磷酸[M].北京:化学工业出版社,1987:356-359. |
26 | 李恒,郭旭东,钟晋,等.磷石膏杂质及净化研究现状[J].磷肥与复肥,2022,37(5):22-26. |
LI Heng, GUO Xudong, ZHONG Jin,et al.Research status of phosphogypsum impurities and purification[J].Phosphate & Com-Fertilizer pound,2022,37(5):22-26. | |
27 | TANG Yongbo, GAO Jianming, LIU Chuanbei,et al.Dehydration pathways of gypsum and the rehydration mechanism of soluble anhydrite γ-CaSO4 [J].ACS Omega,2019,4(4):7636-7642. |
28 | KAZRAGIS A.High‐temperature decontamination and utilization of phosphogypsum[J].Journal of Environmental Engineering and Landscape Management,2004,12(4):138-145. |
29 | CAO Wenxiang, YI Wei, PENG Jiahui,et al.Preparation of anhydrite from phosphogypsum:Influence of phosphorus and fluorine impurities on the performances[J].Construction and Building Materials,2022,318:126021. |
30 | 林洲,邓铃夕,李凤玲,等.快烧对磷石膏可溶磷杂质及其脱水产物的影响[J].非金属矿,2013,36(5):1-3. |
LIN Zhou, DENG Lingxi, LI Fengling,et al.Transformation of soluble phosphate impurities and dehydration product in phosphogypsum after fast firing[J].Non-Metallic Mines,2013,36(5):1-3. | |
31 | 焦叶宏,杨林,李贺军,等.流态化热处理对磷石膏杂质及胶凝性能的影响[J].建筑材料学报,2019,22(3):401-407,439. |
JIAO Yehong, YANG Lin, LI Hejun,et al.Effect of fluidized heat treatment on impurities and gelling properties of phosphogyps-um[J].Journal of Building Materials,2019,22(3):401-407, 439. | |
32 | LIU Shuhua, OUYANG Jiayi, REN Jun.Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement[J].Construction and Building Materials,2020,243:118226. |
33 | CAO Wenxiang, YI Wei, PENG Jiahui,et al.Recycling of phosphogypsum to prepare gypsum plaster:Effect of calcination temperature[J].Journal of Building Engineering,2022,45:103511. |
[1] | 冷曼希, 朱钰, 严继康, 谢轲, 邹永洁. 工业废料磷石膏结晶特征与矿物浮选性能研究[J]. 无机盐工业, 2025, 57(3): 108-115. |
[2] | 谭善宜, 文惠子, 何淑玉, 张沥文, 陈绍华, 习本军. 磷石膏中磷的浸出行为及其动力学研究[J]. 无机盐工业, 2025, 57(2): 105-112. |
[3] | 唐凯靖, 刘川北, 李英丁, 蒋勇, 吴俊男, 张涛. 超疏水磷石膏制品的制备及机理研究[J]. 无机盐工业, 2025, 57(1): 97-102. |
[4] | 唐雪梅, 王美波, 徐丽, 张旭杰, 邰石君, 易贤美, 刘红娟, 潘邻屹. 磷石膏低温煅烧增白研究[J]. 无机盐工业, 2024, 56(8): 110-115. |
[5] | 孙岚, 谌世英, 杨柳絮, 牛依明, 赵澳楠. 镁渣固定磷石膏中可溶磷的基础研究[J]. 无机盐工业, 2024, 56(8): 92-98. |
[6] | 胡成, 刘梦, 向玮衡, 陈平, 王能, 卢冠举, 周金兰. CaCl2和MgCl2及其复合溶液制备α-半水石膏[J]. 无机盐工业, 2024, 56(7): 112-117. |
[7] | 胡典, 郭泽, 张汉泉, 路漫漫. 焙烧工艺及典型杂质对磷石膏还原分解过程影响研究[J]. 无机盐工业, 2024, 56(7): 88-95. |
[8] | 胡成, 刘梦, 向玮衡, 段鹏选, 李顺凯, 明阳, 王能, 卢冠举. NaCl溶液浓度对磷石膏制备α-半水石膏转晶行为的影响[J]. 无机盐工业, 2024, 56(6): 87-93. |
[9] | 屠艳平, 白登显, 程书凯, 谢俊杰, 黄志良, 陈国夫. 矿粉和生石灰高温改性对磷石膏水泥基材料性能影响[J]. 无机盐工业, 2024, 56(6): 94-101. |
[10] | 王明顺, 敖先权, 袁兴, 董文燕, 陈前林. 转晶剂对磷石膏制备无水硫酸钙影响的研究[J]. 无机盐工业, 2024, 56(5): 101-107. |
[11] | 邓伏礼, 夏志祥, 龙秉文, 张逸, 戴亚芬, 王斌, 丁一刚. 磷石膏反浮选提纯工艺研究[J]. 无机盐工业, 2024, 56(5): 115-120. |
[12] | 王培雄, 龚小梅, 丁家琪, 曹宏. 转晶剂对不同工业石膏制备α-半水石膏的影响[J]. 无机盐工业, 2024, 56(4): 112-117. |
[13] | 李快, 栗照帅, 董庭轩, 李丹, 郭生伟, 韩凤兰. 湿法磁选对粉煤灰中铁和重金属元素的分布影响研究[J]. 无机盐工业, 2024, 56(4): 98-104. |
[14] | 陈凤, 冯康, 李铭, 沈豪杰, 田承涛, 唐远, 李智力, 何东升. 有机改性硫酸钙晶须在沥青改性中的应用[J]. 无机盐工业, 2024, 56(3): 125-130. |
[15] | 王茹霆, 赵小蓉, 黄绪泉, 王豪杰, 薛菲, 蔡家伟. 混合相磷石膏基胶结材制备与早期性能研究[J]. 无机盐工业, 2024, 56(3): 98-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|