无机盐工业 ›› 2023, Vol. 55 ›› Issue (1): 46-55.doi: 10.19964/j.issn.1006-4990.2022-0098
徐前进1(),徐金钢2,田朋1,2(),刘坤吉1,高婷婷2,宁桂玲2
收稿日期:
2022-03-04
出版日期:
2023-01-10
发布日期:
2023-01-17
作者简介:
徐前进(1978— ),男,硕士,主要从事无机粉体的开发与生产;E-mail:基金资助:
XU Qianjin1(),XU Jingang2,TIAN Peng1,2(),LIU Kunji1,GAO Tingting2,NING Guiling2
Received:
2022-03-04
Published:
2023-01-10
Online:
2023-01-17
摘要:
锂离子电池正极材料的性能是锂电池技术发展的瓶颈。近年来,为了提高锂离子电池正极材料的循环寿命、热稳定性和倍率性能等,三氧化二铝涂覆正极材料已经被广泛研究。所讨论的三氧化二铝涂层分为粗糙涂层、超薄涂层和厚涂层。简要论述了三氧化二铝表面涂层改善正极材料的作用,如氟化氢清除剂、物理保护屏障、提高锂离子扩散速率、提升正极材料的热稳定性能、与六氟磷酸锂(LiPF6)反应生成二氟磷酸锂(LiPO2F2)和抑制Jahn-Teller效应等。介绍表面改性的方法,包括浸渍法、沉淀法、干法包覆、溅射法和原子层沉积法等,以及其对锂离子电池正极材料钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)及三元材料(Li-Ni-Co-Mn-O)的影响。最后,展望了三氧化二铝表面包覆和原子层沉积技术的发展前景。
中图分类号:
徐前进,徐金钢,田朋,刘坤吉,高婷婷,宁桂玲. 氧化铝包覆锂离子电池正极材料的研究进展[J]. 无机盐工业, 2023, 55(1): 46-55.
XU Qianjin,XU Jingang,TIAN Peng,LIU Kunji,GAO Tingting,NING Guiling. Research progress of alumina coated cathode materials for lithium-ion batteries[J]. Inorganic Chemicals Industry, 2023, 55(1): 46-55.
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J].Nature, 2001, 414(6861):359- 367. |
2 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J].Nature Energy, 2018, 3(4):267-278. |
3 | WHITTINGHAM M S. Lithium batteries:50 years of advances to address the next 20 years of climate issues[J].Nano Letters, 2020, 20(12):8435-8437. |
4 | ARICÒ A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J].Nature Materials, 2005, 4(5):366-377. |
5 | TAO Haisheng, FENG Zhizhong, LIU Hao, et al. Reality and future of rechargeable lithium batteries[J].The Open Materials Science Journal, 2011, 5(1):204-214. |
6 | WANG Jiali, ZHAO Yu, ZHANG Xiaoqiang, et al. Trace molybdenum doped Li2RuO3 as a cathode material with enhanced performance for lithium ion batteries[J].Sustainable Energy & Fuels, 2019, 3(10):2697-2704. |
7 | LIU Jiequn, WANG Jian, CHEN Qingrong, et al. Mg-doped LiMnPO4/C cathode materials for enhanced lithium storage performance[J].Materials Technology, 2021, 36(3):153-158. |
8 | MA Ben, HUANG Xiao, LIU Zhaofeng, et al. Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0.6Co0.2Mn0.2O2 cathode materials for the high-performance lithium-ion batteries[J].Journal of Materials Science, 2022, 57(4):2857-2869. |
9 | WANG Fangfang, HONG Ruoyu, LU Xuesong, et al. Improvement of long-term cycling performance of high-nickel cathode materials by ZnO coating[J].Nanotechnology Reviews, 2021, 10(1):210- 220. |
10 |
ZHAO Bing, XIE Jingwei, ZHUANG Hua, et al. Improved low-temperature performance of surface modified lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium ion batteri-es[J].Solid State Ionics, 2020, 347.Doi:10.1016/j.ssi.2020.2020.115245.
doi: 10.1016/j.ssi.2020.2020.115245 |
11 | TAI Zige, ZHU Wei, SHI Ming, et al. Improving electrochemical performances of lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for lithium-ion batteri-es[J].Journal of Colloid and Interface Science, 2020, 576:468-475. |
12 |
SUN Yongjiang, LIU Zhedong, CHEN Xiaochun, et al. Enhancing the stabilities and electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode material by simultaneous LiAlO2 coat-ing and Al doping[J].Electrochimica Acta, 2021, 376.Doi:10.1016/j.electacta.2021.138038.
doi: 10.1016/j.electacta.2021.138038 |
13 | SUN Yanyun, LIU Sheng, HOU Yukun, et al. In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte[J].Journal of Power Sources, 2019, 410-411:115-123. |
14 |
LIU Yuan, LIN Xijie, SUN Yonggang, et al. Precise surface engineering of cathode materials for improved stability of lithium-ion batteries[J].Small:Weinheim an Der Bergstrasse, Germany,2019, 15(32).Doi:10.1002/smll.201901019.
doi: 10.1002/smll.201901019 |
15 | GUAN Peiyuan, ZHOU Lu, YU Zhenlu, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J].Journal of Energy Chemistry, 2020, 43:220- 235. |
16 |
KALLURI S, YOON M,JO M,et al. Li-ion cells:Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J].Advanced Energy Materials, 2017, 7(1).Doi:10.1002/aenm.201770006.
doi: 10.1002/aenm.201770006 |
17 | NISAR U, MURALIDHARAN N, ESSEHLI R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J].Energy Storage Materials, 2021, 38:309-328. |
18 | SETENI B, RAPULENYANE N, NGILA J C, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries[J].Journal of Power Sources, 2017, 353:210-220. |
19 |
ZHU Wenchang, HUANG Xue, LIU Tingting, et al. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhan-ced cycleability at extended voltage ranges[J].Coatings, 2019, 9(2).Doi:10.3390/coatings9020092.
doi: 10.3390/coatings9020092 |
20 |
ZHANG Hailin, XU Jiaqiang, ZHANG Jiujun. Surface-coated LiNi0.8Co0.1Mn0.1O2(NCM811) cathode materials by Al2O3,ZrO2,and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries[J].Frontiers in Materials, 2019, 6.Doi:10.3389/fmats.2019.00309.
doi: 10.3389/fmats.2019.00309 |
21 | OH Y,AHN D,NAM S,et al. The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films[J].Journal of Solid State Electrochemistry, 2010, 14(7):1235-1240. |
22 | GRONER M D, ELAM J W, FABREGUETTE F H, et al. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates[J].Thin Solid Films, 2002, 413(1/2):186-197. |
23 |
ZHAO Lini, CHEN Guorong, WENG Yuehua, et al. Precise Al2O3 coating on LiNi0.5Co0.2Mn0.3O2 by atomic layer deposition restrains the shuttle effect of transition metals in Li-ion capacitors[J].Che-mical Engineering Journal, 2020, 401.Doi:10.1016/j.cej.2020.126138.
doi: 10.1016/j.cej.2020.126138 |
24 | CAO Zhaoxia, LI Yanlei, SHI Mengjiao, et al. Improvement of the cycling performance and thermal stability of lithium-ion batteries by coating cathode materials with Al2O3 nano layer[J].Journal of the Electrochemical Society, 2017, 164(2):A475-A481. |
25 |
HAN J G, KIM K, LEE Y, et al. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J].Advanced Materials:Deerfield Beach, Fla.,2019, 31(20).Doi:10.1002/adma.201804822.
doi: 10.1002/adma.201804822 |
26 | WANG Qingsong, JIANG Lihua, YU Yan, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J].Nano Energy, 2019, 55:93-114. |
27 | YANG Hui, ZHUANG G V, ROSS P N Jr. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6 [J].Journal of Power Sources, 2006, 161(1):573-579. |
28 | LIU Mingzhu, VATAMANU J, CHEN Xinli, et al. Hydrolysis of LiPF6-containing electrolyte at high voltage[J].ACS Energy Letters, 2021, 6(6):2096-2102. |
29 | LIU Jianyong, LIU Na, LIU Daotan, et al. Improving the performances of LiCoO2 cathode materials by soaking nano-alumina in commercial electrolyte[J].Journal of the Electrochemical Society, 2007, 154(1):55-63. |
30 | MYUNG S T, IZUMI K, KOMABA S, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries[J].Chemistry of Materials, 2005, 17(14):3695-3704. |
31 |
HU Die, DU Fanghui, CAO Haishang, et al. An effective strategy to control thickness of Al2O3 coating layer on nickel-rich cathode materials[J].Journal of Electroanalytical Chemistry, 2021, 880.Doi:10.1016/j.jelechem.2020.114910.
doi: 10.1016/j.jelechem.2020.114910 |
32 | ZHENG J M, ZHANG Z R, WU X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery[J].Journal of the Electrochemical Society, 2008, 155(10):A775-A782. |
33 | LI Xiangnan, CAO Zhaoxia, DONG Hongyu, et al. Investigation of the structure and performance of Li[Li0.13Ni0.305Mn0.565]O2 Li-rich cathode materials derived from eco-friendly and simple coating techniques[J].RSC Advances, 2020, 10(6):3166-3174. |
34 | LAI Feiyan, ZHANG Xiaohui, WANG Hongqiang, et al. Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries[J].ACS Applied Materials & Interfaces, 2016, 8(33):21656-21665. |
35 | WANG Q Y, LIU J, MURUGAN A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J].Journal of Materials Chemistry, 2009, 19(28):4965-4972. |
36 | DONG Mingxia, WANG Zhixing, LI Hangkong, et al. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material[J].ACS Sustainable Chemistry & Engineering, 2017, 5(11):10199-10205. |
37 | JUNG S C, HAN Y K. How do Li atoms pass through the Al2O3 coating layer during lithiation in Li-ion batteries?[J].The Journal of Physical Chemistry Letters, 2013, 4(16):2681-2685. |
38 | LIU Wen, LI Xifei, XIONG Dongbin, et al. Significantly improving cycling performance of cathodes in lithium ion batteries:The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2 [J].Nano Energy, 2018, 44:111-120. |
39 | JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNi x Mn y Co z O2(NMC) cathode materials for Li-ion batteries[J].Journal of the Electrochemical Society, 2017, 164(7):A1361-A1377. |
40 | JUNG R, STROBL P, MAGLIA F, et al. Temperature dependence of oxygen release from LiNi0.6Mn0.2Co0.2O2(NMC622) cathode materials for Li-ion batteries[J].Journal of the Electrochemical Society, 2018, 165(11):A2869-A2879. |
41 | JIANG Bing, LI Jingru, LUO Bi, et al. LiPO2F2 electrolyte additive for high-performance Li-rich cathode material[J].Journal of Energy Chemistry, 2021, 60:564-571. |
42 | WANG Chengyun, YU Le, FAN Weizhen, et al. Lithium difluorophosphate as a promising electrolyte lithium additive for high-voltage lithium-ion batteries[J].ACS Applied Energy Materials, 2018, 1(6):2647-2656. |
43 | LIU Q Q, MA Lin, DU C Y, et al. Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells[J].Electrochimica Acta, 2018, 263:237-248. |
44 | LIU Lili, GU Shijie, WANG Shili, et al. A LiPO2F2/LiPF6 dual-salt electrolyte enabled stable cycling performance of nickel-rich lithium ion batteries[J].RSC Advances, 2020, 10(3):1704-1710. |
45 | HALL D S, GAUTHIER R, ELDESOKY A, et al. New chemical insights into the beneficial role of Al2O3 cathode coatings in lithi- |
um-ion cells[J].ACS Applied Materials & Interfaces, 2019, 11(15):14095-14100. | |
46 | GUAN Dongsheng, JEEVARAJAN J A, WANG Ying. Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings[J].Nanoscale, 2011, 3(4):1465-1469. |
47 |
ZUO Changjian, HU Zongxiang, QI Rui, et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn-Teller distortion[J].Advanced Energy Materials, 2020, 10(34).Doi:10.1002/aenm.202070141.
doi: 10.1002/aenm.202070141 |
48 |
HERZOG M J, GAUQUELIN N, ESKEN D, et al. Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina(Al2O3) improving the performance of lithium-ion batteries[J].Energy Technology, 2021, 9(4).Doi:10.1002/ente.202100028.
doi: 10.1002/ente.202100028 |
49 | MCCORMICK J A, CLOUTIER B L, WEIMER A W, et al. Rotary reactor for atomic layer deposition on large quantities of nanoparticles[J].Journal of Vacuum Science & Technology A:Vacuum, Surfaces,and Films,2007, 25(1):67-74. |
50 |
DUAN Chenlong, DENG Zhang, CAO Kun, et al. Surface passivation of Fe3O4 nanoparticles with Al2O3 via atomic layer deposition in a rotating fluidized bed reactor[J].Journal of Vacuum Science & Technology A:Vacuum, Surfaces,and Films,2016, 34(4).Doi:10.1116/1.4952401.
doi: 10.1116/1.4952401 |
51 | JUNG H, PARK W, HOLDER J, et al. Electrochemical properties of high nickel content Li(Ni0.7Co0.2Mn0.1)O₂ with an alumina thin-coating layer as a cathode material for lithium ion batteries[J].Journal of Nanoscience and Nanotechnology, 2020, 20(10):6505-6511. |
52 | CHANG Qian, WEI Aijia, LI Wen, et al. Structural and electrochemical characteristics of Al2O3-modified LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J].Ceramics International, 2019, 45(4):5100-5110. |
53 |
CAO Guolin, JIN Zhuomin, ZHU Jie, et al. A green Al2O3 metal oxide coating method for LiNi0.5Co0.2Mn0.3O2 cathode material to improve the high voltage performance[J].Journal of Alloys and Compounds, 2020, 832.Doi:10.1016/j.jallcom.2020.153788.
doi: 10.1016/j.jallcom.2020.153788 |
54 |
SUN Hao, REN Yurong, LIU Zhen, et al. Enhanced electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 coated with Al2O3 nano-film[J].Vacuum, 2021, 183.Doi:10.1016/j.vacuum.2021.109757.
doi: 10.1016/j.vacuum.2021.109757 |
55 |
LI Shiyou, LIANG Wenbiao, XIE Jing, et al. Synthesis of hollow microspheres LiNi0.5Mn1.5O4 coated with Al2O3 and characterization of the electrochemical capabilities[J].Journal of Electrochemical Energy Conversion and Storage, 2020, 17(3).Doi:10.1115/1.4045566.
doi: 10.1115/1.4045566 |
56 |
ZOU Tong, QI Weijing, LIU Xiaoshuo, et al. Improvement of the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by Al2O3 surface coating[J].Journal of Electroanalytical Chemistry, 2020, 859.Doi:10.1016/j.jelechem.2020.113845.
doi: 10.1016/j.jelechem.2020.113845 |
57 | SONG Chunlin, LU Junnan, LIU Yuan, et al. Enhanced electrochemical performance of spinel LiNi0.5Mn1.5O4 for Li-ion batteries with moderate Mn3+ concentration and nanosized thin Al2O3 coating[J].Journal of Materials Science:Materials in Electronics, 2020, 31(6):4815-4821. |
58 | PARMAR R, REZVANI S J, NOBILI F, et al. Electrochemical response and structural stability of the Li+ ion battery cathode with coated LiMn2O4 nanoparticles[J].ACS Applied Energy Materials, 2020, 3(9):8356-8365. |
59 | LI Shiyou, ZHU Konglei, ZHAO Dongni, et al. Porous LiMn2O4 with Al2O3 coating as high-performance positive materials[J].Ionics, 2019, 25(5):1991-1998. |
60 | HAN Binghong,KEY B, LAPIDUS S H, et al. From coating to dopant:How the transition metal composition affects alumina coatings on Ni-rich cathodes[J].ACS Applied Materials & Interfaces, 2017, 9(47):41291-41302. |
61 | HERZOG M J, ESKEN D, JANEK J. Improved cycling performance of high-nickel NMC by dry powder coating with nanostructured fumed Al2O3,TiO2,and ZrO2:A comparison[J].Batteries & Supercaps, 2021, 4(6):1003-1017. |
62 |
KIMURA N, SEKI E, TOOYAMA T, et al. STEM-EELS analysis of improved cycle life of lithium-ion cells with Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode active material[J].Journal of Alloys and Compounds, 2021, 869.Doi:10.1016/j.jallcom.2021.159259.
doi: 10.1016/j.jallcom.2021.159259 |
63 | JEONG E, HONG Chan,TAK Y,et al. Investigation of interfacial resistance between LiCoO2 cathode and LiPON electrolyte in the thin film battery[J].Journal of Power Sources, 2006, 159(1):223-226. |
64 |
CHEN Yangyang, WANG Mingshan, CHEN Junchen, et al. Atomic layer deposition of Al2O3 on LiNi0.68Co0.10Mn0.22O2 for enhanced electrochemical performance[J].Materials Letters, 2020, 271.Doi:10.1016/j.matlet.2020.127771.
doi: 10.1016/j.matlet.2020.127771 |
65 | SHI Yang, ZHANG Minghao, QIAN Danna, et al. Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material[J].Electrochimica Acta, 2016, 203:154-161. |
66 | LEE Boyi, KRAJEWSKI M, HUANG M K, et al. Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries:Investigation of improved cycling performance at elevated temperature[J].Journal of Solid State Electrochemistry, 2021, 25(10/11):2665-2674. |
67 | ZHOU M M, ZHAO J J, QIU S T, et al. Structural and electrochemical properties of Li1.2Ni0.16Mn0.54Co0.08O2-Al2O3 composite prepared by atomic layer deposition as the cathode material for LIBs[J].International Journal of Electrochemical Science, 2020, 15(11):10759-10771. |
68 | JUNG Y S, CAVANAGH A S, DILLON A C, et al. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface |
modification by atomic layer deposition[J].Journal of the Electrochemical Society, 2010, 157(1):A75-A81. | |
69 |
TESFAMHRET Y, YOUNESI R, BERG E J. Influence of Al2O3 coatings on HF induced transition metal dissolution from lithium-ion cathodes[J].Journal of the Electrochemical Society, 2022, 169(1).Doi:10.1149/1945-7111/ac4ab1.
doi: 10.1149/1945-7111/ac4ab1 |
70 |
Yingchun LYU, WU Xia, WANG Kai, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J].Advanced Energy Materials, 2021, 11(2).Doi:10.1002/aenm.202000982.
doi: 10.1002/aenm.202000982 |
71 | KIM Y J, KIM H, KIM B, et al. Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating[J].Chemistry of Materials, 2003, 15(7):1505-1511. |
72 | ZHOU Aijun, LIU Qin, WANG Yi, et al. Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages[J].Journal of Materials Chemistry A, 2017, 5(46):24361-24370. |
73 |
HUANG Yimeng, DONG Yanhao, LI Sa, et al. Lithium manganese spinel cathodes for lithium-ion batteries[J].Advanced Energy Materials, 2021, 11(2).Doi:10.1002/aenm.202000997.
doi: 10.1002/aenm.202000997 |
74 | WALLER G H, BROOKE P D, RAINWATER B H, et al. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime[J].Journal of Power Sources, 2016, 306:162-170. |
75 | ZHANG H H, ZOU Z G, ZHANG S C, et al. A review of the doping modification of LiFePO4 as a cathode material for lithium ion batteries[J].International Journal of Electrochemical Science, 2020, 15(12):12041-12067. |
76 |
ZHAO Qunfang, ZHANG Shuqiong, HU Minyi, et al. Recent advances in LiFePO4 cathode materials for lithium-ion batteries.First-principles research[J].International Journal of Electrochemical Science, 2021, 16.Doi:10.20964/2021.12.11.
doi: 10.20964/2021.12.11 |
77 | SON J T. Surface treatment of LiFePO4 cathode material for lithium secondary battery[J].Journal of the Korean Electrochemical Society, 2010, 13(4):246-250. |
78 | WEN Xiaofeng, LIANG Kui, TIAN Lingyun, et al. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries[J].Electrochimica Acta, 2018, 260:549-556. |
[1] | 周海涛, 温承钦, 郑玲, 孙洁. 金属锂电池负极界面氮化硼修饰膜的研究[J]. 无机盐工业, 2024, 56(4): 85-89. |
[2] | 刘德新, 马腾跃, 安金玲, 刘进荣, 何伟艳. 锰基钠离子电池正极材料设计及电化学性能研究[J]. 无机盐工业, 2024, 56(3): 51-55. |
[3] | 李亚广, 韩东战, 齐利娟. 废旧锂离子电池预处理及电解液回收技术研究现状[J]. 无机盐工业, 2024, 56(2): 1-10. |
[4] | 周煌, 胡晓萍, 任稳, 曹鑫鑫. 硫掺杂Na3(VOPO4)2F正极材料的制备及储钠性能[J]. 无机盐工业, 2024, 56(2): 30-37. |
[5] | 王梦迪, 罗瑾, 吴巍, 周靖辉, 王静, 孙彦民, 于海斌. 微反应法制备γ-Al2O3及其对甲基橙的吸附性能研究[J]. 无机盐工业, 2023, 55(9): 66-74. |
[6] | 冯准. B/Al/Zr协同策略改善高镍单晶正极材料高温稳定性[J]. 无机盐工业, 2023, 55(8): 59-64. |
[7] | 于惠, 王榆彬, 廖折军, 杨云广. 废旧三元锂离子动力电池循环再生利用工艺概述[J]. 无机盐工业, 2023, 55(7): 32-37. |
[8] | 陆钧皓. 退役三元动力锂电池全元素循环再利用工艺研究[J]. 无机盐工业, 2023, 55(6): 92-103. |
[9] | 庞飞, 许颖睿, 柴春玲, 申敬敬, 白立光, 赵晓东. 蒽醌法过氧化氢生产工艺中废弃活性氧化铝的回收利用研究概况[J]. 无机盐工业, 2023, 55(6): 1-7. |
[10] | 朱志红, 朱永芳. 硅掺杂锰酸锂的自蔓延燃烧制备及其性能研究[J]. 无机盐工业, 2023, 55(5): 66-70. |
[11] | 徐敬尧,周小丽,孙敬会,曹阿林,卿培林. 基于复合熔盐低温制备片状α-氧化铝的研究[J]. 无机盐工业, 2023, 55(2): 73-78. |
[12] | 田朋, 徐金钢, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 纳米氧化铝浆料制备及用于改性锂电池正极材料[J]. 无机盐工业, 2023, 55(12): 43-49. |
[13] | 郭雪琴, 邓小川, 朱朝梁, 扶鑫, 王瑞瑞, 马婉霞, 樊洁, 左方涛, 卿彬菊. 改性硅藻土负载磷钼酸铵复合吸附剂的制备及其吸附Cs+研究[J]. 无机盐工业, 2023, 55(11): 19-26. |
[14] | 田朋, 周若辉, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 不同粒径薄水铝石微晶的合成及其脱水动力学分析[J]. 无机盐工业, 2023, 55(11): 27-36. |
[15] | 彭晨熹, 刘军. 钠离子电池层状过渡金属氧化物正极材料的研究进展[J]. 无机盐工业, 2023, 55(10): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|