无机盐工业 ›› 2021, Vol. 53 ›› Issue (6): 31-40.doi: 10.19964/j.issn.1006-4990.2021-0212
收稿日期:
2021-04-09
出版日期:
2021-06-10
发布日期:
2021-07-08
作者简介:
张婷(1997— ),女,博士研究生,研究方向为高性能电池级磷酸铁锂制备;E-mail: 基金资助:
Zhang Ting1(),Lin Sen1,2(),Yu Jianguo1,2()
Received:
2021-04-09
Published:
2021-06-10
Online:
2021-07-08
摘要:
橄榄石型磷酸铁锂是目前应用十分广泛的锂离子电池正极材料之一,具有成本低、安全性高、环境友好、循环寿命长和工作电压稳定的特点。近年来,随着CTP技术、刀片电池技术等取得的突破性进展,磷酸铁锂的商业化程度得到了大幅提高。但磷酸铁锂存在电子导电性较差和离子扩散系数低的缺陷,严重限制了锂离子电池的电化学容量,因此开展磷酸铁锂制备工艺和性能强化研究对磷酸铁锂的性能提升具有重要意义。对比了磷酸铁锂电池与其他正极材料锂离子电池的性能差异和发展现状,系统总结了磷酸铁锂正极材料制备与强化的改性方法及相关研究进展与挑战,并提出了未来的发展方向与研究思路。
中图分类号:
张婷,林森,于建国. 磷酸铁锂正极材料的制备及性能强化研究进展[J]. 无机盐工业, 2021, 53(6): 31-40.
Zhang Ting,Lin Sen,Yu Jianguo. Research progress in synthesis and performance enhancement of LiFePO4 cathode materials[J]. Inorganic Chemicals Industry, 2021, 53(6): 31-40.
表2
磷酸铁锂制备方法优缺点
制备方法 | 优点 | 缺点 | |
---|---|---|---|
固相法 | 高温固相法 | 1)成本较低,步骤简单,流程可靠;2)铁、磷、锂含量易于通过配料控制;3)循环和低温性能良好。 | 1)耗时长、能耗高,需惰性和还原性气氛保护;2)所得产物易出现氧化态 的三价铁;3)颗粒团聚严重,产物颗粒较大,纯度较低,尺寸分布不均匀, 批次一致性差,电化学性能相对较差。4)出气量大,氧分压难以保证; 5)表面能高,加工性能不好;F.容易存在氨气污染问题。 |
碳热还原法 | 1)原料廉价易得、化学稳定性好;2)能耗低,制备工艺简单。 | 1)操作复杂生产周期长,能耗大,产生废气;2)对原料要求高;混料的均匀性影响非常大;3)原料磷酸铁的成分难于控制一致。 | |
微波加热法 | 1)能量高效利用;2)循环性能较好、形貌规则;3)合成温度较低、时间较短;4)避免惰性气体的使用。 | 反应迅速,产物易发生团聚,不利于电化学性能的改善。 | |
液相法 | 水热/溶剂热法 | 1)能耗低,合成效率高;2)产品粒度均一,一次稳定性好;3)可直接合成单晶型磷酸铁 锂,便于直接分析本征性质;4)技术成熟。 | 1)产品结构不一,堆积密度和压实密度较小;2)高温高压下,设备要求高;3)水热法产品易发生替代错位影响性能;4)仍需经高温烧结碳包 覆;5)成本高,需投资建设锂回收装置。 |
溶胶凝胶法 | 可实现纳米级别的均匀混合,可同时实现碳包覆。 | 1)耗时长;2)工艺条件难控制;3)工业化存在较大难度。 | |
共沉淀法 喷雾干燥法 | 1)工艺过程易控制,合成周期短,能耗低; 2)颗粒粒度小且分布均匀。 颗粒均匀、粒径小、循环稳定性好。 | 1)共沉淀过程中的pH不易控制且容易出现偏析;2)合成的材料性能不稳定为工业化难点。 |
[1] | 田柳文, 于华, 章文峰, 等. 锂离子电池的明星材料磷酸铁锂: 基本性能、优化改性及未来展望[J]. 材料导报, 2019,33(21):3561-3579. |
[2] | Chung S Y, Bloking J T, Chiang Y M. Electronically conductive pho-spho-olivines as lithium storage electrodes[J]. Nat.Mater., 2002,1(2):123-128. |
[3] | Zheng J M, Myeong S J, Cho W R, et al. Li-and Mn-rich cathode ma-terials:Challenges to commercialization[J]. Advanced Energy Mate-rials, 2017,7(6).Doi: 10.1002/aenm.201601284. |
[4] |
Yan B G, Lin S N, Kang L, et al. Spinel structured LiMn2O4 prepared by laser annealing[J]. Materials Technology, 2020,35(9/10):606-611.
doi: 10.1080/10667857.2020.1723834 |
[5] | Liu S, Yan P, Li H, et al. One-step microwave synjournal of micro/ nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries[J]. Front.Chem., 2020,8.Doi: 10.3389/fchem.2020.00104. |
[6] |
Gong C L, Xue Z G, Wen S, et al. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries[J]. Journal of Power Sources, 2016,318:93-112.
doi: 10.1016/j.jpowsour.2016.04.008 |
[7] | Gu R, Qian R C, Lyu Yingchun, et al. One-step integrated comodifi-cation to improve the electrochemical performances of high-voltage LiCoO2 for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020,8(25):9346-9355. |
[8] |
Amatucci G. Cobalt dissolution in LiCoO2 based non-aqueous rechar-geable batteries[J]. Solid State Ionics, 1996,83(1/2):167-173.
doi: 10.1016/0167-2738(95)00231-6 |
[9] | Wang J J, Sun X L. Olivine LiFePO4:The remaining challenges for future energy storage[J]. Energy & Environmental Science, 2015,8(4):1110-1138. |
[10] | Padhi A K, Goodenough J B, Nanjundaswamy K S. Phospho-olivines as positive electrode materials for rechargeable lithium batteri-es[J]. J Electrochem.Soc., 1997,144(4):1188-1194. |
[11] | Yang S F, Song Y N, Zavalij P Y, et al. Reactivity,stability and electrochemical behavior of lithium iron phosphates[J]. Electro-chem Commun, 2002,4(3):239-244. |
[12] | Ouyang C Y, Shi S Q, Wang Z X, et al. First-principles study of Li ion diffusion in LiFePO 4[J]. Physical Review B, 2004,69(10):1-5. |
[13] |
Chen J, Wang S, Whittingham M S. Hydrothermal synjournal of cat-hode materials[J]. Journal of Power Sources, 2007,174(2):442-448.
doi: 10.1016/j.jpowsour.2007.06.189 |
[14] | Fisher C A J, Islam M S. Surface structures and crystal morpholo-gies of LiFePO4:Relevance to electrochemical behaviour[J]. Jour-nal of Materials Chemistry, 2008,18(11):1209-1215. |
[15] | 卢俊彪, 张中太, 唐子龙, 等. 一种新型的锂离子电池正极材料——LiFePO4[J]. 稀有金属材料与工程, 2004,33(7):679-683. |
[16] |
Zhang W J. Structure and performance of LiFePO4 cathode materi-als:A review[J]. Journal of Power Sources, 2011,196(6):2962-2970.
doi: 10.1016/j.jpowsour.2010.11.113 |
[17] | Yuan L X, Wang Z H, Zhang W X, et al. Development and challen-ges of LiFePO4 cathode material for lithium-ion batteries[J]. En-ergy Environ.Sci., 2011,4(2):269-284. |
[18] |
Jiang J, Dahn J R. ARC studies of the thermal stability of three different cathode materials:LiCoO2;Li[Ni0.1Co0.8Mn0.1]O2;and LiFePO4,in LiPF6 and LiBoB EC/DEC electrolytes[J]. Electrochem Commun, 2004,6(1):39-43.
doi: 10.1016/j.elecom.2003.10.011 |
[19] |
Dahn J R, Fuller E W, Obrovac M, et al. Thermal stability of LixCoO2,LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells[J]. Solid State Ionics, 1994,69(3):265-270.
doi: 10.1016/0167-2738(94)90415-4 |
[20] |
Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteri-es[J]. Solid State Ionics, 2002,148(3/4):283-289.
doi: 10.1016/S0167-2738(02)00064-4 |
[21] | Ven A V D, Ceder G. Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable li-thium batteries[J]. Electrochem.Commun., 2004,6(10):1045-1050. |
[22] |
Islam M S, Driscoll D J, Fisher C A J, et al. Atomic-scale investiga-tion of defects,dopants,and lithium transport in the LiFePO4 olioli-vine-type battery material[J]. Chemistry of Materials, 2005,17(20):5085-5092.
doi: 10.1021/cm050999v |
[23] | Nishimura S, Kobayashi G, Ohoyama K, et al. Experimental visua-lization of lithium diffusion in LixFePO4[J]. Nat.Mater., 2008,7(9):707-711. |
[24] |
Amin R, Maier J, Balaya P, et al. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone tech-nique[J]. Solid State Ionics, 2008,179(27/28/29/30/31/32):1683-1687.
doi: 10.1016/j.ssi.2008.01.079 |
[25] | Boulfelfel S E, Seifert G, Leoni S. Atomistic investigation of Li+ di-ffusion pathways in the olivine LiFePO4 cathode material[J]. Jo-urnal of Materials Chemistry, 2011,21(41):16365-16372. |
[26] |
Yang Jianjun, Tse J S. Li ion diffusion mechanisms in LiFePO4:An ab initio molecular dynamics study[J]. The Journal of Physical Chemistry A, 2011,115(45):13045-13049.
doi: 10.1021/jp205057d |
[27] | 姚斌. 磷酸铁锂低温相变行为及改性研究[D]. 济南:山东大学, 2015. |
[28] | 惠乐, 唐子龙, 罗绍华, 等. 溶胶凝胶法制备LiFePO4正极材料[J]. 化学进展, 2007,19(10):1460-1466. |
[29] | 甘晖, 童庆松, 汪冰冰, 等. 锂离子蓄电池正极活性材料磷酸亚铁锂[J]. 电源技术, 2003,27(3):339-342. |
[30] | Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources, 2001(97/98):498-502. |
[31] |
Zhao T, Zhang X J, Li X, et al. Crystallinity dependence of electro-chemical properties for LiFePO4[J]. Rare Metals, 2015,34(5):334-337.
doi: 10.1007/s12598-013-0186-y |
[32] |
Wang J, Shao Z B, Ru H Q. Influence of carbon sources on LiFePO 4/C composites synthesized by the high-temperature high-energy ball milling method[J]. Ceramics International, 2014,40(5):6979-6985.
doi: 10.1016/j.ceramint.2013.12.025 |
[33] |
Kozawa T, Kataoka N, Kondo A, et al. One-step mechanical synthe-sis of LiFePO4/C composite granule under ambient atmosphere[J]. Ceramics International, 2014,40(10):16127-16131.
doi: 10.1016/j.ceramint.2014.07.043 |
[34] | 梁亚春. 纳米化锂电池正极材料磷酸铁锂的研究[D]. 成都:电子科技大学, 2017. |
[35] | 俞琛捷, 莫祥银, 康彩荣, 等. 锂离子电池磷酸铁锂正极材料的制备及改性研究进展[J]. 材料科学与工程学报, 2011,29(3):468-470,454. |
[36] | Higuchi M, Katayama K, Azuma Y, et al. Synjournal of LiFePO4 ca-thode material by microwave processing[J]. Journal of Power So-urces, 2003,119:258-261. |
[37] | Park K S, Son J T, Chung H T, et al. Synjournal of LiFePO4 by co-precipitation and microwave heating[J]. Electrochem.Commun., 2003,5(10):839-842. |
[38] | Wu Y N, Zhou L, Xu G Q, et al. Preparation of high tap density LiFePO4/C through carbothermal reduction process using beta-cyclodextrin as carbon source[J]. International Journal of Electro-chemical Science, 2018,13(3):2958-2968. |
[39] | Wang Y F, Luo S H, Yan S X, et al. Carbothermal reduction of LiFePO4/C composite cathodes using acid-washed iron red as raw material through carboxylic acid pyrolysis reducing gas participa-tion strategies[J]. Electrochim Acta, 2020,363.Doi: 10.1016/j.electacta.2020.137159. |
[40] |
Wang Y L, Wang Y F, Luo S H, et al. Preparation of high performa-nce LiFePO4/C by extracting iron element from iron tailings by concentrated sulfuric acid hot dip method[J]. Ionics, 2020,26(4):1645-1655.
doi: 10.1007/s11581-019-03297-7 |
[41] |
Yuan Z Y, Xue Y F, Sun L N, et al. LiFePO4/RGO composites synt-hesized by a solid phase combined with carbothermal reduction method[J]. Ferroelectrics, 2018,528(1):1-7.
doi: 10.1080/10962247.2018.1448185 |
[42] |
Wang X Y, Wen L Z, Zheng Y, et al. Effect of FeSO4 purity on low temperature performance of LiFePO4/C[J]. Ionics, 2020,26(9):4433-4442.
doi: 10.1007/s11581-020-03594-6 |
[43] |
Chen C, Chen Q Q, Li Y W, et al. Microspherical LiFePO3.98F0.02/ 3DG/C as an advanced cathode material for high-energy lithium-ion battery with a superior rate capability and long-term cyclabi-lity[J]. Ionics, 2021,27(1):1-11.
doi: 10.1007/s11581-020-03796-y |
[44] | Wang Y H, Mei R, Yang X M. Enhanced electrochemical properti-ies of LiFePO4/C synthesized with two kinds of carbon sources,PEG-4000 (organic) and Super p(inorganic)[J]. Ceramics Inte-rnational, 2014,40(6):8439-8444. |
[45] | Shi M, Li R W, Liu Y L. In situ preparation of LiFePO4/C with uni-que copolymer carbon resource for superior performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021,854.Doi: 10.1016/j.jallcom.2020.157162. |
[46] |
Zhaoxia C, Guangshuang Z, Ruirui Z, et al. Biological phytic acid guided formation of monodisperse large-sized carbon@LiFePO4/graphene composite microspheres for high-performance lithium-ion battery cathodes[J]. Chemical Engineering Journal, 2018,351:382-390.
doi: 10.1016/j.cej.2018.06.073 |
[47] |
Zhou W Z, Liu C Y, Wen Z F, et al. Effects of defect chemistry and kinetic behavior on electrochemical properties for hydrothermal synjournal of LiFePO4/C cathode materials[J]. Materials Chemistry and Physics, 2019,227:56-63.
doi: 10.1016/j.matchemphys.2019.01.050 |
[48] |
Johnson I D, Lubke M, Wu O Y, et al. Pilot-scale continuous synt-hesis of a vanadium-doped LiFePO4 /C nanocomposite high-rate cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2016,302:410-418.
doi: 10.1016/j.jpowsour.2015.10.068 |
[50] |
Chen L J, Feng W J, Pu Z S, et al. Impact of pH on preparation of LiFePO4@C cathode materials by a sol-gel route assisted by bio-mineralization[J]. Ionics, 2019,25(12):5625-5632.
doi: 10.1007/s11581-019-03273-1 |
[51] |
Liu H C, Wang Y M, Hsieh C C. Optimized synjournal of Cu-doped LiFePO4/C cathode material by an ethylene glycol assisted co-pre-cipitation method[J]. Ceramics International, 2017,43(3):3196-3201.
doi: 10.1016/j.ceramint.2016.11.144 |
[52] |
Guo F, Kong Z, Wang T, et al. Porous microspheres consisting of carbon-modified LiFePO4 grains prepared by a spray-drying assist-ed approach using cellulose as carbon source[J]. Ionics, 2020,26(6):2737-2746.
doi: 10.1007/s11581-019-03388-5 |
[53] |
Xi Y M, Lu Y C. Toward uniform in situ carbon coating on nano-LiFePO4 via a solid-state reaction[J]. Industrial & Engineering Chemistry Research, 2020,59(30):13549-13555.
doi: 10.1021/acs.iecr.0c01553 |
[54] | Alsamet M A M M, Burgaz E. Synjournal and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods[J]. Electrochim Acta, 2021,367.Doi: 10.1016/j.electacta.2020.137530. |
[55] | Cao Z X, Sang M, Chen S N, et al. In situ constructed(010)-orient-ed LiFePO4 nanocrystals/carbon nanofiber hybrid network:Facile synjournal of free-standing cathodes for lithium-ion batteries[J]. Electrochim Acta, 2020,333.Doi: 10.1016/j.electacta.2019.135538. |
[56] |
Fei T, Chen M, Li G, et al. Synergism of ionic liquid and surfactant molecules in the growth of LiFePO4 nanorods and the electroche-mical performances[J]. Journal of Power Sources, 2012,202:384-388.
doi: 10.1016/j.jpowsour.2011.11.063 |
[57] | Shao D Q, Wang J X, Dong X T, et al. Preparation and electroche-mical performances of LiFePO4/C composite nanobelts via facile electrospinning[J]. Journal of Materials Science:Materials in Elec-tronics, 2014,25(2):1040-1046. |
[58] |
Wang G X, Shen X P, Yao J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electro-chemical performance[J]. Journal of Power Sources, 2009,189(1):543-546.
doi: 10.1016/j.jpowsour.2008.10.044 |
[59] |
Eftekhari A. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017,343:395-411.
doi: 10.1016/j.jpowsour.2017.01.080 |
[60] |
Zhang Y, Jiao Y D, Liao M, et al. Carbon nanomaterials for flexible lithium ion batteries[J]. Carbon, 2017,124:79-88.
doi: 10.1016/j.carbon.2017.07.065 |
[61] |
Zhang B A, Kang F Y, Tarascon J M, et al. Recent advances in elec-trospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science, 2016,76:319-380.
doi: 10.1016/j.pmatsci.2015.08.002 |
[62] |
Wang H K, Yang X M, Wu Q Z, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage[J]. ACS Nano, 2018,12(4):3406-3416.
doi: 10.1021/acsnano.7b09092 |
[63] |
Weng W, Kurihara R, Wang J, et al. Electrospun carbon nanofiber-based composites for lithium-ion batteries:Structure optimization towards high performance[J]. Composites Communications, 2019,15:135-148.
doi: 10.1016/j.coco.2019.07.005 |
[64] | Dimesso L, Spanheimer C, Jaegermann W, et al. LiFePO4-3D car-bon nanofiber composites as cathode materials for Li-ions batteries[J]. Journal of Applied Physics, 2012,111(6):555-558. |
[65] |
Wang X F, Feng Z J, Huang J T, et al. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018,127:149-157.
doi: 10.1016/j.carbon.2017.10.101 |
[66] |
Luo W B, Chou S L, Zhai Y C, et al. Self-assembled graphene and LiFePO4 composites with superior high rate capability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014,2(14):4927-4931.
doi: 10.1039/c3ta14471b |
[67] | Liu W, Song M S, Kong B, et al. Flexible and stretchable energy storage:Recent advances and future perspectives[J]. Adv Mater, 2017,29(1).Doi: 10.1002/adma.201603436. |
[68] | Park S, Oh J, Kim J M, et al. Facile preparation of cellulose nano-fiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery[J]. Electrochim Acta, 2020,354.Doi: 10.1016/j.electa-cta.2020.136707. |
[69] |
Guan Y B, Shen J R, Wei X F, et al. High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode materi-al for Li-ion batteries[J]. Applied Surface Science, 2019,481:1459-1465.
doi: 10.1016/j.apsusc.2019.03.213 |
[70] | Li B Q, Zhao W, Zhang C, et al. Monodispersed LiFePO4@C core-Core-shell nanoparticles anchored on 3D carbon cloth for high-rate performance binder-free lithium ion battery cathode[J]. Journal of Nanomaterials, 2020.Doi: 10.1155/2020/2607017. |
[71] | Oh J, Lee J, Jeon Y, et al. Melamine foam-derived N-doped carbon framework and graphene-supported LiFePO4 composite for high performance lithium-ion battery cathode material[J]. ACS Susta-inable Chemistry & Engineering, 2019,7(1):306-314. |
[72] |
Ou J K, Yang L, Jin F, et al. High performance of LiFePO4 with ni-trogen-doped carbon layers for lithium ion batteries[J]. Advanced Powder Technology, 2020,31(3):1220-1228.
doi: 10.1016/j.apt.2019.12.044 |
[73] | Wang X F, Feng Z J, Hou X L, et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithiumion batteries[J]. Che-mical Engineering Journal, 2020,379.Doi: 10.1016/j.cej.2019.122371. |
[74] |
Li C L, Xie Y C, Zhang N S, et al. Optimization of LiFePO4 cathode material based on phosphorus doped graphite network structure for lithium ion batteries[J]. Ionics, 2019,25(3):927-937.
doi: 10.1007/s11581-018-2744-7 |
[75] | Li Y, Wang L, Zhang K Y, et al. An encapsulation of phosphorus doped carbon over LiFePO4 prepared under vacuum condition for lithium-ion batteries[J]. Vacuum, 2021,184.Doi: 10.1016/j.vacu-um.2020.109935. |
[76] |
Wang W, Tang M Q, Yan Z W. Superior Li-storage property of an advanced LiFePO4@C/S-doped graphene for lithium-ion batteri-es[J]. Ceramics International, 2020,46(14):22999-3005.
doi: 10.1016/j.ceramint.2020.06.075 |
[77] |
Wagemaker M, Ellis B L, Lützenkirchen-Hecht D, et al. Proof of supervalent doping in olivine LiFePO4[J]. Chemistry of Materials, 2008,20(20):6313-6315.
doi: 10.1021/cm801781k |
[78] | Meethong N, Kao Y H, Carter W C, et al. Comparative study of lithium transport kinetics in olivine cathodes for Li-ion batteries[J]. Che-mistry of Materials, 2010,22(3):1088-1097. |
[79] |
Guan S Q, Hu Z H, Dong Y, et al. A facile solvothermal synjournal of Mn-doped LiFePO4 nanoplates with improved electrochemical performances[J]. Ionics, 2021,27(1):21-30.
doi: 10.1007/s11581-019-03319-4 |
[80] | Zhao S N, Wen L, Liu J L, et al. Mn-doped LiFePO4/C Composite with excellent high-rate performance as lithium ion batteries ca-thode[J]. International Journal of Electrochemical Science, 2020,15(9):8873-8882. |
[81] | Li Z F, Ren X, Zheng Y, et al. Effect of Ti doping on LiFePO4/C cathode material with enhanced low-temperature electrochemical performance[J]. Ionics, 2020,26(4):1599-1609. |
[82] | Liu W M, Wang W G, Qin M L, et al. Well-dispersed multi-doped LiFePO4/C composite with excellent electrochemical properties for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020,15(6):5404-5415. |
[83] | Zhang Y, Alarco J A, Nerkar J Y, et al. Observation of preferential cation doping on the surface of LiFePO4 particles and its effect on properties[J]. ACS Applied Energy Materials, 2020,3(9):9158-9167. |
[84] | Pignanelli F, Romero M, Mombrú D, et al. Insights of cobalt doping on carbon-coated LiFePO4 olivine nanoparticles prepared by citric acid combustion route as cathodes for lithium batteries[J]. Ionics, 2019,25(8):3593-3601. |
[85] | Li X T, Shao Z B, Liu K R, et al. Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling-based method[J]. Journal of Solid State Electrochemistry, 2019,23(2):465-473. |
[86] | Nugraha I M A, Noerochim L, Susanti D. High stability on n-doped LiFePO4/C as cathode of lithium-ion battery[C]//. International Conference on Science and Applied Science,2019.US,AlP Conference Proceedings, 2019.Doi: 10.1063/1.5141666. |
[87] | Noerochim L, Ramadhani A I, Susanti D. High electrochemical per-formance of F-doped LiFePO4 as cathode for lithium-ion batte-ry[C]//International Conference on Science and Applied Science, 2019.US,AlP Conference Proceedings, 2019.Doi: 10.1063/1.5141665. |
[1] | 周海涛, 温承钦, 郑玲, 孙洁. 金属锂电池负极界面氮化硼修饰膜的研究[J]. 无机盐工业, 2024, 56(4): 85-89. |
[2] | 刘德新, 马腾跃, 安金玲, 刘进荣, 何伟艳. 锰基钠离子电池正极材料设计及电化学性能研究[J]. 无机盐工业, 2024, 56(3): 51-55. |
[3] | 李亚广, 韩东战, 齐利娟. 废旧锂离子电池预处理及电解液回收技术研究现状[J]. 无机盐工业, 2024, 56(2): 1-10. |
[4] | 周煌, 胡晓萍, 任稳, 曹鑫鑫. 硫掺杂Na3(VOPO4)2F正极材料的制备及储钠性能[J]. 无机盐工业, 2024, 56(2): 30-37. |
[5] | 冯准. B/Al/Zr协同策略改善高镍单晶正极材料高温稳定性[J]. 无机盐工业, 2023, 55(8): 59-64. |
[6] | 于惠, 王榆彬, 廖折军, 杨云广. 废旧三元锂离子动力电池循环再生利用工艺概述[J]. 无机盐工业, 2023, 55(7): 32-37. |
[7] | 王紫涵, 李军, 陈明, 周青禺. 硝酸铁和磷酸共沉淀法制备电池级磷酸铁工艺研究[J]. 无机盐工业, 2023, 55(7): 51-57. |
[8] | 潘晓晓, 庄树新, 孙雨晴, 孙高星, 任艳, 蒋声育. 动力型磷酸铁锂正极材料改性的研究进展[J]. 无机盐工业, 2023, 55(6): 18-26. |
[9] | 陆钧皓. 退役三元动力锂电池全元素循环再利用工艺研究[J]. 无机盐工业, 2023, 55(6): 92-103. |
[10] | 朱志红, 朱永芳. 硅掺杂锰酸锂的自蔓延燃烧制备及其性能研究[J]. 无机盐工业, 2023, 55(5): 66-70. |
[11] | 陈昱珏, 张梁军, 旷焕, 蒋漫文, 肖利. 磷酸铁锂废粉硫酸氢钠焙烧回收工艺研究[J]. 无机盐工业, 2023, 55(3): 113-117. |
[12] | 徐瑞琳, 曾涛, 刘欢, 刘兴伟, 王浩, 徐晓明, 赵李鹏. 磷酸铁锂电池循环初期衰减快原因分析及性能改善[J]. 无机盐工业, 2023, 55(3): 92-97. |
[13] | 田朋, 徐金钢, 徐前进, 刘坤吉, 庞洪昌, 宁桂玲. 纳米氧化铝浆料制备及用于改性锂电池正极材料[J]. 无机盐工业, 2023, 55(12): 43-49. |
[14] | 屈恋, 李越珠, 李铭雅, 王昭沛, 陈燕玉, 李意能. 磷化铁对磷酸铁锂电化学性能的影响探究[J]. 无机盐工业, 2023, 55(12): 88-94. |
[15] | 彭晨熹, 刘军. 钠离子电池层状过渡金属氧化物正极材料的研究进展[J]. 无机盐工业, 2023, 55(10): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|