[1] |
ZHOU H C, KITAGAWA S. Metal-organic frameworks(MOFs)[J]. Chemical Society Reviews, 2014, 43:5415-5418.
doi: 10.1039/C4CS90059F
|
[2] |
ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112:673-674.
doi: 10.1021/cr300014x
|
[3] |
XIAO X, ZOU L L, PANG H, et al. Synjournal of micro/nanoscaled metal-organic frameworks and their direct electrochemical applica- tions[J]. Chemical Society Reviews, 2020, 49(1):301-331.
doi: 10.1039/C7CS00614D
|
[4] |
WU D, LIU J, JIN J, et al. New Doubly Interpenetrated MOF with [Zn4O] clusters and its doped isomorphic MOF:Sensing,dye,and gas adsorption capacity[J]. Crystal Growth & Design, 2019, 19(11):6774-6783.
doi: 10.1021/acs.cgd.9b01193
|
[5] |
CORMA A, GARCÍA H, LLABRÉS I XAMENA F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chemical Reviews, 2010, 110(8):4606-4655.
doi: 10.1021/cr9003924
|
[6] |
LIANG Z B, QU C, GUO W H, et al. Pristine metal-organic frame- works and their composites for energy storage and conversion[J]. Advanced Materials, 2018, 30(37).Doi: 10.1002/adma.201702891.
doi: 10.1002/adma.201702891
|
[7] |
杜淼, 张光荣. 石墨烯的制备及其应用研究进展[J]. 无机盐工业, 2019, 51(3):12-15.
|
[8] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896
|
[9] |
LIN Y, WILLIAMS T V, CONNELL J W. Soluble,exfoliated hexago- nal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1):277-283.
doi: 10.1021/jz9002108
|
[10] |
DU M, WU Y Z, HAO X P. A facile chemical exfoliation method to obtain large size boron nitride nanosheets[J]. CrystEngComm, 2013, 15(9):1782-1786.
doi: 10.1039/c2ce26446c
|
[11] |
CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two- dimensional layered transition metal dichalcogenide nanoshee- ts[J]. Nature Chemistry, 2013, 5(4):263-275.
doi: 10.1038/nchem.1589
|
[12] |
ASHWORTH D J, FOSTER J A. Metal-organic framework nano- sheets(MONs):A new dimension in materials chemistry[J]. Jour- nal of Materials Chemistry A, 2018, 6(34):16292-16307.
|
[13] |
ZHENG Y, ZHENG S S, XU Y X, et al. Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage[J]. Chemical Engineering Journal, 2019, 373:1319-1328.
doi: 10.1016/j.cej.2019.05.145
|
[14] |
BAI X J, CHEN D, LI L L, et al. Fabrication of MOF thin films at miscible liquid-liquid interface by spray method[J]. ACS Applied Materials & Interfaces, 2018, 10(31):25960-25966.
|
[15] |
ZHAO M T, WANG Y X, MA Q L, et al. Ultrathin 2D metal-orga- nic framework nanosheets[J]. Advanced Materials, 2015, 27(45):7372-7378.
doi: 10.1002/adma.201503648
|
[16] |
HAO G P, TANG C, ZHANG E, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37).Doi: 10.1002/adma.201702829.
doi: 10.1002/adma.201702829
|
[17] |
ZHAO M T, LU Q P, MA Q L, et al. Two-dimensional metal-organ- ic framework nanosheets[J]. Small Methods, 2017, 1(1/2).Doi: 10.1002/smtd.201600030.
doi: 10.1002/smtd.201600030
|
[18] |
AMELOOT R, VERMOORTELE F, VANHOVE W, et al. Interfaci- al synjournal of hollow metal-organic framework capsules demon- strating selective permeability[J]. Nature Chemistry, 2011, 3(5):382-387.
doi: 10.1038/nchem.1026
|
[19] |
PENG Y, LI Y S, BAN Y J, et al. Metal-organic framework nano- sheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215):1356-1359.
doi: 10.1126/science.1254227
|
[20] |
YUAN M W, WANG R, FU W B, et al. Ultrathin Two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 Batteries[J]. ACS App- lied Materials & Interfaces, 2019, 11(12):11403-11413.
|
[21] |
ZHENG Y S, SUN F Z, HAN X, et al. Recent progress in 2D metal- organic frameworks for optical applications[J]. Advanced Optical Materials, 2020, 8(13).Doi: 10.1002/adom.202000110.
doi: 10.1002/adom.202000110
|
[22] |
ZHAO S L, WANG Y, DONG J C, et al. Ultrathin metalorganic fra- mework nanosheets for electrocatalytic oxygen evolution[J]. Na- ture Energy, 2016, 1(12).Doi: 10.1038/nenergy.2016.184.
doi: 10.1038/nenergy.2016.184
|
[23] |
SAKAIDA S, OTSUBO K, SAKATA O, et al. Crystalline coordina- tion framework endowed with dynamic gate-opening behaviour by being downsized to a thin film[J]. Nature Chemistry, 2016, 8(4):377-383.
doi: 10.1038/nchem.2469
|
[24] |
WU G D, HUANG J H, ZANG Y, et al. Porous field-effect transis- tors based on a semiconductive metal-organic framework[J]. Jour- nal of the American Chemical Society, 2017, 139(4):1360-1363.
|
[25] |
LAHIRI N, LOTFIZADEH N, TSUCHIKAWA R, et al. Hexaamino- benzene as a building block for a family of 2D coordination poly- mers[J]. Journal of the American Chemical Society, 2017, 139(1):19-22.
doi: 10.1021/jacs.6b09889
|
[26] |
YAO M S, LV X J, FU Z H, et al. Layer-by-layer assembled con- ductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angewandte Chemie International Edition, 2017, 56(52):16510-16514.
doi: 10.1002/anie.201709558
|
[27] |
RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1):48-55.
doi: 10.1038/nmat4113
|
[28] |
HU Z G, MAHDI E M, PENG Y W, et al. Kinetically controlled sy- njournal of two-dimensional Zr/Hf metal-organic framework nano- sheets via a modulated hydrothermal approach[J]. Journal of Materials Chemistry A, 2017, 5:8954-8963.
doi: 10.1039/C7TA00413C
|
[29] |
ZHAO K M, LIU S Q, YE G Y, et al. High-yield bottom-up synthe- sis of 2D metal-organic frameworks and their derived ultrathin car- bon nanosheets for energy storage[J]. Journal of Materials Chemistry A, 2018, 6(5):2166-2175.
doi: 10.1039/C7TA06916B
|
[30] |
WANG Y X, ZHAO M T, PING J F, et al. Bioinspired design of ul- trathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes[J]. Advanced Materials, 2016, 28(21):4149-4155.
doi: 10.1002/adma.201600108
|
[31] |
CAO F F, ZHAO M T, YU Y F, et al. Synjournal of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metalorganic framework nanosheets as precursors for supercapacitor applica- tion[J]. Journal of the American Chemical Society, 2016, 138(22):6924-6927.
doi: 10.1021/jacs.6b02540
|
[32] |
ZUO Q, LIU T T, CHEN C S, et al. Ultrathin metal-organic frame- work nanosheets with ultrahigh loading of single Pt atoms for effi- cient visible-light-driven photocatalytic H2 evolution[J]. Angewan- dte Chemie International Edition, 2019, 58(30):10198-10203.
|
[33] |
DING Y J, CHEN Y P, ZHANG X L, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks us- ing a chemically labile intercalating agent[J]. Journal of the Am- erican Chemical Society, 2017, 139(27):9136-9139.
|
[34] |
LI C, YANG Q, SHEN M, et al. The electrochemical Na intercala- tion/extraction mechanism of ultrathin cobalt(Ⅱ) terephthalate- based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy[J]. Energy Storage Materials, 2018, 14:82-89.
doi: 10.1016/j.ensm.2018.02.021
|
[35] |
JIAN M P, QIU R S, XIA Y, et al. Ultrathin water-stable metal-or- ganic framework membranes for ion separation[J]. Science Advan- ces, 2020, 6(23):1-9.
|
[36] |
LIU Q, LI X F, WEN Y H, et al. Twofold interpenetrated 2D MOF nanosheets generated by an instant in situ exfoliation method:Mo- rphology control and fluorescent sensing[J]. Advances Materials, 2020, 7(16).Doi: 10.1002/admi.202000813.
doi: 10.1002/admi.202000813
|
[37] |
WANG M C, SHI H H, ZHANG P P, et al. Phthalocyanine-based 2D conjugated metal-organic framework nanosheets for high-per- formance micro-supercapacitors[J]. Advances Functional Materials, 2020, 30(30).Doi: 10.1002/adfm.202002664.
doi: 10.1002/adfm.202002664
|
[38] |
HAN L J, ZHENG D, CHEN S G, et al. A highly solvent-stable me- tal-organic framework nanosheet:Morphology control,exfoliation,and luminescent property[J]. Small, 2018, 14(17).Doi: 10.1002/smll.201703873.
doi: 10.1002/smll.201703873
|