无机盐工业 ›› 2023, Vol. 55 ›› Issue (5): 16-23.doi: 10.19964/j.issn.1006-4990.2022-0419
赖晓玲(), 周微, 臧甲忠(
), 董子超, 胡明亮, 孙绍宸
收稿日期:
2022-07-11
出版日期:
2023-05-10
发布日期:
2023-05-15
通讯作者:
臧甲忠,教授级高工,研究方向为工业催化;E-mail:zangjiazhong@163.com。作者简介:
赖晓玲(1996— ),女,硕士,研究方向为催化材料的制备与构效关系的研究;E-mail:laixl5@cnooc.com.cn。
基金资助:
LAI Xiaoling(), ZHOU Wei, ZANG Jiazhong(
), DONG Zichao, HU Mingliang, SUN Shaochen
Received:
2022-07-11
Published:
2023-05-10
Online:
2023-05-15
摘要:
钙循环法被认为是捕集二氧化碳的有效途径,其通过利用氧化钙基吸收剂和二氧化碳之间的可逆反应来实现吸收剂循环使用。近年来,氧化钙基吸收剂因其成本低、二氧化碳吸收率高、原料来源广等优点备受关注,并广泛应用于制氢、水泥行业中的二氧化碳捕集。但是,该吸收剂存在再生温度高、氧化钙活性组分易烧结、吸收二氧化碳性能迅速下降等问题阻碍了其工业化应用。基于此,综述了近年来高性能氧化钙基吸收剂的制备方法,分析了该类型吸收剂在各领域应用中存在的问题,并提出了实现氧化钙基吸收剂低温循环利用的技术路线,为实现大规模工业碳捕集提供参考。
中图分类号:
赖晓玲, 周微, 臧甲忠, 董子超, 胡明亮, 孙绍宸. 氧化钙基吸收剂低温循环吸收二氧化碳的研究进展[J]. 无机盐工业, 2023, 55(5): 16-23.
LAI Xiaoling, ZHOU Wei, ZANG Jiazhong, DONG Zichao, HU Mingliang, SUN Shaochen. Research progress of low temperature cyclic sorption of carbon dioxide by calcium oxide-based sorbents[J]. Inorganic Chemicals Industry, 2023, 55(5): 16-23.
1 | 郭伟,石涵,袁标.无机固体吸附剂在二氧化碳捕集应用中的研究进展[J].无机盐工业,2021,53(12):29-34,42. |
GUO Wei, SHI Han, YUAN Biao.Research progress of inorganic solid adsorbents in carbon dioxide capture[J].Inorganic Chemicals Industry,2021,53(12):29-34,42. | |
2 | 江涛,魏小娟,王胜平,等.固体吸附剂捕集CO2的研究进展[J].洁净煤技术,2022,28(1):42-57. |
JIANG Tao, WEI Xiaojuan, WANG Shengping,et al.Research progress on solid sorbents for CO2 capture[J].Clean Coal Technology,2022,28(1):42-57. | |
3 | ARIAS B, ABANADES J C, GRASA G S.An analysis of the effect of carbonation conditions on CaO deactivation curves[J].Chemical Engineering Journal,2011,167(1):255-261. |
4 | CAMPBELL F R, HILLS A W D, PAULIN A.Transport properties of porous lime and their influence on the decomposition of porous compacts of calcium carbonate[J].Chemical Engineering Science,1970,25(6):929-942. |
5 | BHATIA S K, PERLMUTTER D D.Effect of the product layer on the kinetics of the CO2-lime reaction[J].AIChE Journal,1983,29(1):79-86. |
6 | LYSIKOV A I, SALANOV A N, OKUNEV A G.Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J].Industrial & Engineering Chemistry Research,2007,46(13):4633-4638. |
7 | LU Hong, REDDY E P, SMIRNIOTIS P G.Calcium oxide based sorbents for capture of carbon dioxide at high temperatures[J].Industrial & Engineering Chemistry Research,2006,45(11):3944-3949. |
8 | LIU Wenqiang, LOW N W L, FENG Bo,et al.Calcium precursors for the production of CaO sorbents for multicycle CO2 capture[J].Environmental Science & Technology,2010,44(2):841-847. |
9 | WANG Nana, FENG Yuchuan, LIU Liang,et al.Effects of preparation methods on the structure and property of Al-stabilized CaO-based sorbents for CO2 capture[J].Fuel Processing Technology,2018,173:276-284. |
10 | XU Yongqing, LUO Cong, ZHENG Ying,et al.Characteristics and performance of CaO-based high temperature CO2 sorbents derived from a sol-gel process with different supports[J].RSC Advances,2016,6(83):79285-79296. |
11 | GUO Hongxia, WANG Shengping, LI Chun,et al.Incorporation of Zr into calcium oxide for CO2 capture by a simple and facile sol-gel method[J].Industrial & Engineering Chemistry Research,2016,55(29):7873-7879. |
12 | XU Yonghui, XIAO Baohua, FENG Yanyan,et al.Mn-promoted CaO-based adsorbents with enhanced CO2 uptake performan-ce[J].Journal of Natural Gas Science and Engineering,2021,94:104029. |
13 | NAEEM M A, ARMUTLULU A, IMTIAZ Q,et al.CaO-based CO2 sorbents effectively stabilized by metal oxides[J].ChemPhysChem,2017,18(22):3280-3285. |
14 | GUO Hongxia, KOU Xiaochen, ZHAO Yujun,et al.Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent:Textural properties,electron donation,and oxygen vacancy[J].Chemical Engineering Journal,2018,334:237-246. |
15 | GUO Hongxia, WANG Xiao, WANG Huan,et al.Double-exchange-induced effective increased CO2 capture of CaO by doping bimetallic oxides with variable valence state[J].Chemical Engineering Journal,2022,433:134490. |
16 | RUI Han, XING Shuang, WU Xueqian,et al.Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO3 cycles[J].Renewable Energy,2022,181:267-277. |
17 | SANTOS D B L, OLIVEIRA A C P, HORI C E.Performance of Na2CO3-CaO sorbent in sorption-enhanced steam methane reforming[J].Journal of CO2 Utilization,2021,51:101634. |
18 | XU Yongqing, LUO Cong, ZHENG Ying,et al.Macropore-stabilized limestone sorbents prepared by the simultaneous hydration-impregnation method for high-temperature CO2 capture[J].Energy & Fuels,2016,30(4):3219-3226. |
19 | 李英杰,赵长遂,段伦博,等.钾钠盐类对钙基CO2吸附剂循环碳酸化的影响[J].中国电机工程学报,2009,29(2):52- 57. |
LI Yingjie, ZHAO Changsui, DUAN Lunbo,et al.Effect of potassium and sodium salts on cyclic carbonation of calcium-based CO2 sorbent[J].Proceedings of the CSEE,2009,29(2):52-57. | |
20 | ARIAS B, GRASA G S, ABANADES J C.Effect of sorbent hydration on the average activity of CaO in a Ca-looping system[J].Chemical Engineering Journal,2010,163(3):324-330. |
21 | WANG Shengping, SHEN Hui, FAN Shasha,et al.Enhanced CO2 adsorption capacity and stability using CaO-based adsorbents treated by hydration[J].AIChE Journal,2013,59(10):3586-3593. |
22 | FANG Yi, LI Yingjie, DOU Yehui,et al.Effect of steam on heat storage and attrition performance of limestone under fluidization during CaO/CaCO3 heat storage cycles[J].Reaction Chemistry & Engineering,2022,7(10):2093-2106. |
23 | GIAMMARIA G, LEFFERTS L.Catalytic effect of water on calcium carbonate decomposition[J].Journal of CO2 Utilization,2019,33:341-356. |
24 | MA Xiaotong, LI Yingjie, ZHANG Wan,et al.DFT study of CO2 adsorption across a CaO/Ca12Al14O33 sorbent in the presence of H2O under calcium looping conditions[J].Chemical Engineering Journal,2019,370:10-18. |
25 | LI Yingjie, ZHAO Changsui, QU Chengrui,et al.CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation[J].Chemical Engineering & Technology,2008,31(2):237-244. |
26 | DANG Chengxiong, WU Shijie, CAO Yonghai,et al.Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates[J].Chemical Engineering Journal,2019,360:47-53. |
27 | DANG Chengxiong, LUO Jinlu, YANG Wenwen,et al.Low-temperature catalytic dry reforming of methane over Pd promoted Ni-CaO-Ca12Al14O33 multifunctional catalyst[J].Industrial & Engineering Chemistry Research,2021,60(50):18361-18372. |
28 | DANG Chengxiong, LONG Juan, LI Hanke,et al.Pd-promoted Ni-Ca-Al bi-functional catalyst for integrated sorption-enhanced steam reforming of glycerol and methane reforming of carbona-te[J].Chemical Engineering Science,2021,230:116226. |
29 | SUN Shuzhuang, LV Zongze, QIAO Yuanting,et al.Integrated CO2 capture and utilization with CaO-alone for high purity syngas production[J].Carbon Capture Science & Technology,2021,1:100001. |
30 | DUARTE J P R, KRIECHBAUMER D, LACHMANN B,et al.Solar calcium looping cycle for CO2 capturing in a cement plant.Definition of process parameters and reactors selection[J].Solar Energy,2022,238:189-202. |
31 | SANTOS M P S, HANAK D P.Carbon capture for decarbonisation of energy-intensive industries:A comparative review of techno-economic feasibility of solid looping cycles[J].Frontiers of Chemical Science and Engineering,2022,16(9):1291-1317. |
32 | SIKARWAR V S, PFEIFER C, RONSSE F,et al.Progress in in-situ CO2-sorption for enhanced hydrogen production[J].Progress in Energy and Combustion Science,2022,91:101008. |
33 | BUNMA T, KUCHONTHARA P.Synergistic study between CaO and MgO sorbents for hydrogen rich gas production from the pyrolysis-gasification of sugarcane leaves[J].Process Safety and Environmental Protection,2018,118:188-194. |
34 | HANAOKA T, YOSHIDA T, FUJIMOTO S,et al.Hydrogen production from woody biomass by steam gasification using a CO2 sorbent[J].Biomass and Bioenergy,2005,28(1):63-68. |
35 | WEI Di, JIA Zekun, SUN Zhao,et al.Process simulation and economic analysis of calcium looping gasification for coal to synthetic natural gas[J].Fuel Processing Technology,2021,218:106835. |
36 | WANG Xun, GAO Jun, JIANG Liaxia.Feasibility analysis of H2 production by calcium looping process based on coal gasification in a transport reactor[J].International Journal of Hydrogen Energy,2016,41(28):12000-12018. |
37 | AN Hui, SONG Tao, SHEN Laihong,et al.Coal gasification with in situ CO2 capture by the synthetic CaO sorbent in a 1 kWth dual fluidised-bed reactor[J].International Journal of Hydrogen Energy,2012,37(19):14195-14204. |
38 | WANG Qinhui, RONG Nai, FAN Hongtao,et al.Enhanced hydrogen-rich gas production from steam gasification of coal in a pressurized fluidized bed with CaO as a CO2 sorbent[J].International Journal of Hydrogen Energy,2014,39(11):5781-5792. |
39 | SEDGHKERDAR M H, MOSTAFAVI E, MAHINPEY N.Sorbent enhanced hydrogen production from steam gasification of coal integrated with CO2 capture[J].International Journal of Hydrogen Energy,2014,39(30):17001-17008. |
40 | BOSOAGA A, MASEK O, OAKEY J E.CO2 capture technologies for cement industry[J].Energy Procedia,2009,1(1):133-140. |
41 | ATSONIOS K, GRAMMELIS P, ANTIOHOS S K,et al.Integration of calcium looping technology in existing cement plant for CO2 capture:Process modeling and technical considerations[J].Fuel,2015,153:210-223. |
42 | DEAN C C, DUGWELL D, FENNELL P S.Investigation into potential synergy between power generation,cement manufacture and CO2 abatement using the calcium looping cycle[J].Energy & Environmental Science,2011,4(6):2050-2053. |
43 | VATOPOULOS K, TZIMAS E.Assessment of CO2 capture technologies in cement manufacturing process[J].Journal of Cleaner Production,2012,32:251-261. |
44 | ROMANO M C, SPINELLI M, CAMPANARI S,et al.The calcium looping process for low CO2 emission cement and power[J].Energy Procedia,2013,37:7091-7099. |
45 | 贺隽,吴素芳.吸附强化的甲烷水蒸汽重整制氢反应特性[J].化学反应工程与工艺,2007,23(5):470-473. |
HE Jun, WU Sufang.The characteristics of sorption enhanced steam methane reforming for hydrogen production on a complex catalyst[J].Chemical Reaction Engineering and Technology,2007,23(5):470-473. | |
46 | MA Xiaotong, LI Yingjie, HUANG Xingkang,et al.Sorption-enhanced reaction process using advanced Ca-based sorbents for low-carbon hydrogen production[J].Process Safety and Environmental Protection,2021,155:325-342. |
47 | RYDÉN M, RAMOS P.H2 production with CO2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carrier and CaO as CO2 sorbent[J].Fuel Processing Technology,2012,96:27-36. |
48 | MARTAVALTZI C S, PAMPAKA E P, KORKAKAKI E S,et al.Hydrogen production via steam reforming of methane with simultaneous CO2 capture over CaO-Ca12Al14O33 [J].Energy & Fuels,2010,24(4):2589-2595. |
49 | ZHANG Chunxiao, LI Yingjie, HE Zirui,et al.Microtubular Fe/Mn-promoted CaO-Ca12Al14O33 bi-functional material for H2 production from sorption enhanced water gas shift[J].Applied Catalysis B:Environmental,2022,314:121474. |
[1] | 王雪萌, 安燕, 刘海, 田蒙奎. 基于生命周期评价法的黄磷产品碳足迹分析[J]. 无机盐工业, 2023, 55(12): 36-42. |
[2] | 崔香梅, 潘彤彤, 罗清龙, 边富璇, 叶秀深. 氨基醇改性GO/CNTs复合气凝胶的制备及对盐湖卤水硼的吸附[J]. 无机盐工业, 2023, 55(12): 59-65. |
[3] | 李强, 由晓敏, 佘雪峰, 姜泽毅, 薛庆国, 王静松. 焙烧温度与碳结构对钙碳球团抗压强度的影响[J]. 无机盐工业, 2023, 55(9): 43-49. |
[4] | 常承兵, 刘生玉, 张雷, 杨志超, 郭建英, 栗褒. 钙硅酸盐矿物湿法碳酸化封存二氧化碳实验研究[J]. 无机盐工业, 2023, 55(9): 57-65. |
[5] | 周世奇, 王涛, 敬方梨, 罗仕忠. 硝酸镁改性碳分子筛分离氮气/甲烷的性能研究[J]. 无机盐工业, 2023, 55(9): 75-80. |
[6] | 陈燕萌, 莫慧玲, 钟家美, 杨鹏飞, 蓝峻峰. 碳化法制备多孔碳酸钙的工艺研究[J]. 无机盐工业, 2023, 55(8): 102-108. |
[7] | 鲁琴, 方伟, 赵雷. 石墨化碳修饰碳化稻壳泡沫的制备及光热水蒸发性能[J]. 无机盐工业, 2023, 55(7): 122-129. |
[8] | 李波, 廖碧海. 功能化氧化石墨烯的制备及其在硅酸盐水泥中的应用[J]. 无机盐工业, 2023, 55(6): 57-62. |
[9] | 乔琨,吕泽宁,杨立军,杜小泽. 氨法捕碳技术再生过程无机添加剂效应研究进展[J]. 无机盐工业, 2022, 54(10): 79-86. |
[10] | 张亚萍. 乙醇胺捕集燃煤烟气二氧化碳工艺模拟[J]. 无机盐工业, 2022, 54(8): 96-100. |
[11] | 徐莉华,黄政,张星,杜怀明,陈晓超,黄斌. 天然气制乙炔副产炭黑/白炭黑复合材料的制备与性能研究[J]. 无机盐工业, 2022, 54(5): 121-125. |
[12] | 严硕,于海斌,陈赞. 膜法脱除天然气中二氧化碳的工艺技术发展现状[J]. 无机盐工业, 2022, 54(5): 38-46. |
[13] | 赵一欣,吴梦凡,王建行,赵颖颖. 二氧化碳在双极膜电渗析系统中溶解吸收过程的研究[J]. 无机盐工业, 2022, 54(4): 104-111. |
[14] | 张发荣,凡甜甜,郭燕云,李璐,刘炳光,李建生. 自清洁膜材料研究进展[J]. 无机盐工业, 2022, 54(4): 74-80. |
[15] | 王典,苏琼,庞少峰,曹世军,康莉会,梁丽春,王彦斌,李朝霞. 基于氧化铁/生物质碳复合材料的高性能超级电容器研究[J]. 无机盐工业, 2022, 54(3): 59-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|