1 |
XU Zhenyuan, WANG Ruzhu.Absorption heat pump for waste heat reuse:Current states and future development[J].Frontiers in Energy,2017,11(4):414-436.
|
2 |
英国石油公司.BP世界能源统计年鉴[R].伦敦:英国石油公司,2021.
|
|
BP Amoco.BP statistical review of world energy[R].London:BP Amoco,2021.
|
3 |
International Energy Agency.World energy outlook 2021[R].Paris:IEA,2021.
|
4 |
CIAN E, WING I SUE.Correction to:Global energy consumption in a warming climate[J].Environmental and Resource Economics,2019,72:365-410.
|
5 |
中国建筑节能协会.中国建筑能耗与碳排放研究报告 2021[R].北京:中国建筑节能协会,2021.
|
|
China Association of Building Energy Efficiency.China building energy consumption and carbon emission research report 2021[R].Beijing:CABEE,2021.
|
6 |
JEREMIAS F, KHUTIA A, HENNINGER S K,et al.MIL-100(Al,Fe) as water adsorbents for heat transformation purposes:A promising application[J].Journal of Materials Chemistry,2012,22(20):10148-10151.
|
7 |
MOGHADAM P Z, LI A, WIGGIN S B,et al.Development of a Cambridge structural database subset:A collection of metal-organic frameworks for past,present,and future[J].Chemistry of Materials,2017,29(7):2618-2625.
|
8 |
DEMIR H.Development of microwave assisted zeolite-water adsorption heat pump[J].International Journal of Refrigeration,2013,36(8):2289-2296.
|
9 |
CANIVET J, FATEEVA A, GUO Youmin,et al.Water adsorption in MOFs:Fundamentals and applications[J].Chemical Society Reviews,2014,43(16):5594-5617.
|
10 |
SARKISOV L, CENTINEO A, BRANDANI S.Molecular simulation and experiments of water adsorption in a high surface area activated carbon:Hysteresis,scanning curves and spatial organization of water clusters[J].Carbon,2017,118:127-138.
|
11 |
FURUKAWA H, GÁNDARA F, ZHANG Yuebiao,et al.Water adsorption in porous metal-organic frameworks and related materials[J].Journal of the American Chemical Society,2014,136(11):4369-4381.
|
12 |
HENNINGER S K, SCHMIDT F P, HENNING H M.Water adsorption characteristics of novel materials for heat transformation applications[J].Applied Thermal Engineering,2010,30(13):1692-1702.
|
13 |
VISHNYAKOV A, RAVIKOVITCH P I, NEIMARK A V,et al.Nanopore structure and sorption properties of Cu-BTC metal-organic framework[J].Nano Letters,2003,3(6):713-718.
|
14 |
KÜSGENS P, ROSE M, SENKOVSKA I,et al.Characterization of metal-organic frameworks by water adsorption[J].Microporous and Mesoporous Materials,2009,120(3):325-330.
|
15 |
VAN ASSCHE T R C, DUERINCK T, GUTIERREZ-SEVILLANO J J,et al.High adsorption capacities and two-step adsorption of polar adsorbates on Cu-BTC metal-organic framework[J].Journal of Physic Chemistry C,2013,117(35):18100-18111.
|
16 |
DANTAS S, NEIMARK A V.Coupling structural and adsorption properties of metal-organic frameworks:From pore size distribution to pore type distribution[J].ACS Applied Materials & Interfaces,2020,12(13):15595-15605.
|
17 |
WÖLLNER M, KLEIN N, KASKEL S.Measuring water adsorption processes of metal-organic frameworks for heat pump applications via optical calorimetry[J].Microporous and Mesoporous Materials,2019,278:206-211.
|
18 |
HE Wenling, GUO Xiaohui, ZHENG Jing,et al.Structural evolution and compositional modulation of ZIF-8-derived hybrids comprised of metallic Ni nanoparticles and silica as interlayer[J].Inorganic Chemistry,2019,58(11):7255-7266.
|
19 |
ZHANG K, LIVELY R P, DOSE M E,et al.Alcohol and water adsorption in zeolitic imidazolate frameworks[J].Chemical Communications,2013,49(31):3245-3247.
|
20 |
苏亭宇,王丽伟,吴韶飞,等.锌基-MOFs 对氨吸附制冷性能的分子模拟研究[J].制冷学报,2022,43(4):120-128.
|
|
SU Tingyu, WANG Liwei, WU Shaofei,et al.Molecular simulation study on ammonia adsorption refrigeration performance of zinc-based-MOFs[J].Chinese Journal of Refrigeration,2022,43(4):120-128.
|
21 |
吴选军,杨旭,宋杰,等.ZIF-8材料中CH4/H2吸附与扩散的分子模拟[J].化学学报,2012,70(24):2518-2524.
|
|
WU Xuanjun, YANG Xu, SONG Jie,et al.Molecular simulation of adsorption and diffusion of CH4 and H2 in ZIF-8 material[J].Acta Chimica Sinica,2012,70(24):2518-2524.
|
22 |
PARK K S, NI Z, CÔTÉ A P,et al.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J].PNAS,2006,103(27):10186-10191.
|
23 |
FÉREY G, MELLOT-DRAZNIEKS C, SERRE C,et al.A chromium terephthalate-based solid with unusually large pore volumes and surface area[J].Science,2005,309(5743):2040-2042.
|
24 |
EHRENMANN J, HENNINGER S K, JANIAK C.Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs[J].European Journal of Inorganic Chemistry, 2011(4):471-474.
|
25 |
JEREMIAS F, FRÖHLICH D, JANIAK C,et al.Water and methanol adsorption on MOFs for cycling heat transformation process-es[J].New Journal of Chemistry,2014,38(5):1846-1852.
|
26 |
LIU Zhilu, AN Guoliang, XIA Xiaoxiao,et al.The potential use of metal-organic framework/ammonia working pairs in adsorption chillers[J].Journal of Materials Chemistry A,2021,9(10):6188-6195.
|
27 |
DE LANGE M F, VEROUDEN K J F M, VLUGT T J H,et al.Adsorption-driven heat pumps:The potential of metal-organic frameworks[J].Chemical Reviews,2015,115(22):12205-12250.
|
28 |
YAN Jian, YU Ying, MA Chen,et al.Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J].Applied Thermal Engineering,2015,84:118-125.
|
29 |
LIU Zhongbao, GAO Jiayang, QI Xin,et al.Experimental study on activated carbon-MIL-101(Cr) composites for ethanol vapor adsorption[J].Materials,2021,14(14).Doi:10.3390/ma14143811.
|
30 |
CANIVET J, BONNEFOY J, DANIEL C,et al.Structure-property relationships of water adsorption in metal-organic frameworks[J].New Journal of Chemistry,2014,38(7):3102-3111.
|
31 |
KHUTIA A, RAMMELBERG H U, SCHMIDT T,et al.Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application[J].Chemistry of Materials,2013,25(5):790-798.
|
32 |
JASUJA H, ZANG Ji, SHOLL D S,et al.Rational tuning of water vapor CO2 adsorption in highly stable Zr-based MOFs[J].The Journal of Physical Chemistry C,2012,116(44):23526-23532.
|
33 |
CMARIK G E, KIM M, COHEN S M,et al.Tuning the adsorption properties of UiO-66 via ligand functionalization[J].Langmuir,2012,28(44):15606-15613.
|
34 |
SONG Yan, XU Ning, LIU Guoliang,et al.High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels[J].Nature Nanotechnology,2022,17(8):857-863.
|
35 |
TANG Songyuan, WANG Yongsheng, YUAN Yafei,et al.Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvest-ing[J].New Carbon Materials,2022,37(1):237-244.
|
36 |
HAO Guangping, MONDIN G, ZHENG Zhikun,et al.Unusual ultra-hydrophilic,porous carbon cuboids for atmospheric-water cap- ture[J].Angewandte Chemie,2015,54(6):1941-1945.
|
37 |
MAKHANYA N, OBOIRIEN B, REN Jianwei,et al.Recent advances on thermal energy storage using metal-organic frameworks(MOFs)[J].Journal of Energy Storage,2021,34. Doi:10.1016/j.est.2020.102179.
|
38 |
LIU Zhongbao, ZHAO Banghua, ZHU Longqian,et al.Performance of MIL-101(Cr)/water working pair adsorption refrigeration system based on a new type of adsorbent filling method[J].Materials,2020,13(1).Doi:10.3390/ma13010195.
|
39 |
ZHAO Y J, WANG R Z, ZHANG Y N,et al.Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat[J].Energy,2016,115:129-139.
|
40 |
YU N, WANG R Z, WANG L W.Theoretical and experimental investigation of a closed sorption thermal storage prototype using LiCl/water[J].Energy,2015,93:1523-1534.
|
41 |
PALOMBA V, VASTA S, FRENI A.Experimental testing of AQSOA FAM Z02/water adsorption system for heat and cold storage[J].Applied Thermal Engineering,2017,124:967-974.
|