[1] |
MENG L R, GUO L J, LI X Y, et al. Salt hydrate based phase change materials for thermal energy storage-A review[J]. Energy Storage Science and Technology, 2017, 6(4):623-632.
|
[2] |
张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展[J]. 材料导报, 2014, 28(13):26-32.
|
[3] |
李秋玫, 季旭, 兰青, 等. 无机水合盐相变储热材料的过冷及导热性能研究进展[J]. 云南师范大学学报:自然科学版, 2021, 41(1):19-24.
|
[4] |
MINNICH A J. Advances in the measurement and computation of thermal phonon transport properties[J]. Journal of Physics:Conden-sed Matter, 2015, 27.Doi: 10.1088/0953-8984/27/5/053202.
|
[5] |
FRANKLIN A, KNOX E. Emergence without limits:The case of pho-nons[J]. Studies in History and Philosophy of Modern Physics, 2018, 64:68-78.
|
[6] |
ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhan-cement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1):385-389.
|
[7] |
WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhance-ment on phase change materials for thermal energy storage:A revi-ew[J]. Energy Storage Materials, 2020, 25:251-295.
|
[8] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
|
[9] |
WARZOHA R J, FLEISCHER A S. Improved heat recovery from pa- raffin-based phase change materials due to the presence of percola-ting graphene networks[J]. International Journal of Heat and Mass Transfer, 2014, 79:314-323.
|
[10] |
LI J F, LU W, ZENG Y B, et al. Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene[J]. Solar Energy Ma-terials and Solar Cells, 2014, 128:48-51.
|
[11] |
PAVLA H, GALINA S, JANA P, et al. Improvement of thermal en-ergy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahy-drate[J]. Renewable Energy, 2021, 168:1015-1026.
|
[12] |
QI G Q, LIANG C L, BAO R Y, et al. Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide[J]. Solar Energy Materi-als and Solar Cells, 2014, 123:171-177.
|
[13] |
MEHRALI M, LATIBARI S T, MEHRALI M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J]. Energy Conversion and Ma-nagement, 2013, 67:275-282.
|
[14] |
JIN Z Y, TIAN Y Y, XU X X, et al. Experimental investigation on graphene oxide/SrCl2·6H2O modified CaCl2·6H2O and the resulting thermal performances[J]. Materials, 2018, 11(9).Doi: 10.3390/ma11091507.
|
[15] |
ZHAO Y J, WANG R Z, WANG L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES(thermal energy stor-age)[J]. Energy, 2014, 70:272-277.
|
[16] |
WU Y P, WANG T. Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage[J]Energy Conversion and Ma-nagement, 2015, 101:164-171.
|
[17] |
XIA L, ZHANG P. Thermal property measurement and heat trans-fer analysis of acetamide and acetamide/expanded graphite compo-site phase change material for solar heat storage[J]Solar Energy Materials and Solar Cells, 2011, 95(8):2246-2254.
|
[18] |
WU S, LI T X, YAN T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 102:733-744.
|
[19] |
LIN Z Y, MCNAMARA A, LIU Y, et al. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal con-ductivity for electronic encapsulation[J]. Composites Science and Technology, 2014, 90:123-128.
|
[20] |
FANG X, FAN L W, DING Q, et al. Thermal energy storage perfor-mance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets[J]. Energy Conversion and Management, 2014, 80:103-109.
|
[21] |
GU J W, MENG X D, TANG Y S, et al. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities[J]. Composites Part A- Applied Science and Manufacturing, 2017, 92:27-32.
|
[22] |
BARHEMMATI-RAJAB N, ZHAO W H. Investigation into boron nitride nanoparticle effects on thermal properties of calcium chlo-ride hexahydrate (CaCl2·6H2O) as a phase change material[J]. MRS Communications, 2018, 8(4):1439-1444.
|
[23] |
JIANG Y L, SHI X J, FENG Y Z, et al. Enhanced thermal conduc-tivity and ideal dielectric properties of epoxy composites contain-ing polymer modifıed hexagonal boron nitride[J]. Composites Part A, 2018, 107:657-664.
|
[24] |
GUO Y Q, LYU Z Y, YANG X T, et al. Enhanced thermal conduc-tivities and decreased thermal resistances of functionalized boron nitride/polyimide composites[J]. Composites Part B-Engineering, 2019, 164:732-739.
|
[25] |
CHO H, TOKOI Y, TANAKA S, et al. Modification of BN nano-sheets and their thermal conducting properties in nanocomposite-fılm with polysiloxane according to the orientation of BN[J]. Composites Science and Technology, 2011, 71:1046-1052.
|
[26] |
MA X Y, WU S Y, YI Z M, et al. The effect mechanism of functio-nalization on thermal conductivity of boron nitride nanosheets/paraffin composites[J]. International Journal of Heat and Mass Tra-nsfer, 2019, 137:790-798.
|
[27] |
MADATHIL P K, BALAGI N, SAHA P, et al. Preparation and characterization of molten salt based nanothermic fluids with en-hanced thermal properties for solar thermal applications[J]. App-lied Thermal Engineering, 2016, 109:901-905.
|
[28] |
DU X S, QIU J H, DENG S, et al. Ti3C2Tx@PDA-integrated polyu-rethane phase change composites with superior solar-thermal con-version efficiency and improved thermal conductivity[J]. ACS Sustainable Chemistry and Engineering, 2020, 8:5799-5806.
|
[29] |
SHENG X X, DONG D X, LU X, et al. MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change ma-terial with enhanced light-to-thermal conversion efficiency,ther-mal energy storage capability and thermal conductivity[J]. Compo-sites Part A, 2020, 138.Doi: 10.1016/j.compositesa.2020.106067.
|
[30] |
CUI H, LIAO W, MI X, et al. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsu-lated phase-change materials[J]. Energy Build, 2015, 105:273-284.
|
[31] |
HE Y, ZHANG X, ZHAN Y J, et al. Utilization of lauric acid-myri-stic acid/expanded graphite phase change materials to improve ther-mal properties of cement mortar[J]. Energy and Buildings, 2016, 133:547-558.
|
[32] |
WANG X, YU H, LI L, et al. Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials(SSPCMs)[J]. Energy and Buildings, 2016, 128:567-574.
|
[33] |
LING Z Y, WEN X Y, ZHANG Z G, et al. Thermal management performance of phase change materials with different thermal con-ductivities for Li-ion battery packs operated at low temperatures[J]. Energy, 2018, 144:977-983.
|
[34] |
JIANG G W, HUANG J H, FU Y S, et al. Thermal optimization of composite phase change material/expanded graphite for Li-ion ba-ttery thermal management[J]. Applied Thermal Engineering, 2016, 108:1119-1125.
|
[35] |
LIN C, XU S, CHANG G, et al. Experiment and simulation of a LiFePO4,battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Jo-urnal of Power Sources, 2015, 275:742-749.
|
[36] |
SUN L L, XIANG N, YUAN Y P, et al. Experimental investigation on performance comparison of solar water heating-phase change material system and solar water heating system[J]. Energies, 2019, 12(12).Doi: 10.3390/en12122347.
|
[37] |
XIAO Q Q, CAP J H, ZHANG Y X, et al. The application of solar-to-thermal conversion phase change material in novel solar water heating system[J]. Solar Energy, 2020, 199:484-490.
|