无机盐工业 ›› 2024, Vol. 56 ›› Issue (3): 1-11.doi: 10.19964/j.issn.1006-4990.2023-0370
• 综述与专论 • 下一篇
杨卓1,2(), 李春雷1,2, 张鑫1,2, 乔勉1,2, 田玉琴1,2, 宫源1,2()
收稿日期:
2023-07-13
出版日期:
2024-03-10
发布日期:
2024-03-18
通讯作者:
宫源(1989— ),男,博士,讲师,从事微纳颗粒制备研究及相关反应器开发;E-mail:chemeng_lut@163.com。作者简介:
杨卓(1999— ),男,硕士研究生,从事纳米氧化锌制备工艺研究;E-mail:212085600184@lut.edu.cn。
基金资助:
YANG Zhuo1,2(), LI Chunlei1,2, ZHANG Xin1,2, QIAO Mian1,2, TIAN Yuqin1,2, GONG Yuan1,2()
Received:
2023-07-13
Published:
2024-03-10
Online:
2024-03-18
摘要:
纳米氧化锌是一种新型无机功能材料,广泛用于橡胶、涂料、催化等领域。其液相法制备技术具有产物粒径及形貌易控制、经济成本低、易于实现工业化的优点。重点综述了包括微乳液法、溶胶-凝胶法、水热/溶剂热法和化学沉淀法在内的纳米氧化锌液相法制备技术,阐释了各方法的基本原理、关键影响因素,强调了过程强化技术在制备过程中的重要作用。进一步介绍了“气泡液膜法”的新思路,其特征在于通过表面活性剂与反应液、空气的快速混合,形成具有高堆密度微气泡的纳米反应环境,成核晶体在气泡间10~100 nm的液膜内限域生长,通过控制气泡间液膜厚度调控纳米粒子大小,所得产物粒径均一、不易团聚,有望实现低成本纳米氧化锌的连续规模化生产。
中图分类号:
杨卓, 李春雷, 张鑫, 乔勉, 田玉琴, 宫源. 纳米氧化锌液相法制备技术进展[J]. 无机盐工业, 2024, 56(3): 1-11.
YANG Zhuo, LI Chunlei, ZHANG Xin, QIAO Mian, TIAN Yuqin, GONG Yuan. Progress of liquid-phase preparation technology of zinc oxide nanoparticles[J]. Inorganic Chemicals Industry, 2024, 56(3): 1-11.
1 | LEITNER J, BARTŮNĚK V, SEDMIDUBSKÝ D,et al.Thermodynamic properties of nanostructured ZnO[J].Applied Materials Today,2018,10:1-11. |
2 | MOIZ M A, MUMTAZ A, SALMAN M,et al.Enhancement of dye degradation by zinc oxide via transition-metal doping:A review[J].Journal of Electronic Materials,2021,50(9) :5106-5121. |
3 | HESSIEN M.Recent progress in zinc oxide nanomaterials and nanocomposites:From synthesis to applications[J].Ceramics International,2022,48(16):22609-22628. |
4 | QIN Xuan, XU Haoshu, ZHANG Ganggang,et al.Enhancing the performance of rubber with nano ZnO as activators[J].ACS Applied Materials & Interfaces,2020,12(42):48007-48015. |
5 | JIANG Zhengquan, LIU Bokang, YU Laigui,et al.Research progresses in preparation methods and applications of zinc oxide nanoparticles[J].Journal of Alloys and Compounds,2023,956:170316. |
6 | STURDY L F, WRIGHT M S,YEE A,et al.Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings[J].Polymer,2020,191:122222. |
7 | SARI M G, SAEB M R, SHABANIAN M,et al.Epoxy/starch-modified nano-zinc oxide transparent nanocomposite coatings:A showcase of superior curing behavior[J].Progress in Organic Coatings,2018,115:143-150. |
8 | HASANAH A U, GARESO P L, RAUF N,et al.Photocatalytic performance of zinc oxide and metal-doped zinc oxide for various organic pollutants[J].ChemBioEng Reviews,2023,10(5):698-710. |
9 | GHOLAMI M, JONIDI-JAFARI A, FARZADKIA M,et al.Photocatalytic removal of bentazon by copper doped zinc oxide nanorods:Reaction pathways and toxicity studies[J].Journal of Environmental Management,2021,294:112962. |
10 | MOHSIN M, AHMAD BHATTI I, ASHAR A,et al.Iron-doped zinc oxide for photocatalyzed degradation of humic acid from municipal wastewater[J].Applied Materials Today,2021,23:101047. |
11 | KHMELINSKII I, MAKAROV V I.Optical properties of ZnO semiconductor nanolayers[J].Materials Research Bulletin,2019,109:291-300. |
12 | GU J H, TIAN Y, CHEN S B,et al.Structural,electro-optical and nonlinear optical properties of sputtered titanium-gallium co-doped zinc oxide transparent semiconductor films[J].Journal of Materials Science:Materials in Electronics,2023,34(16):1-12. |
13 | EL-WAHAB R M A, FADEL S M, ABDEL-KARIM A M,et al.Novel green flexible rice straw nanofibers/zinc oxide nanoparticles films with electrical properties[J].Scientific Reports,2023,13:1927. |
14 | GUO Jing, LEGUM B, ANASORI B,et al.Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide[J].Advanced Materials,2018,30(32):1801846. |
15 | NOMAN M T, PETRU M, LOUDA P,et al.Woven textiles coated with zinc oxide nanoparticles and their thermophysiological comfort properties[J].Journal of Natural Fibers,2022,19(12):4718-4730. |
16 | MOHAMMADIPOUR-NODOUSHAN R, SHEKARRIZ S, SHARIATINIA Z,et al.Improved cotton fabrics properties using zinc oxide-based nanomaterials:A review[J].International Journal of Biological Macromolecules,2023,242:124916. |
17 | KRÓL A, POMASTOWSKI P, RAFIŃSKA K,et al.Zinc oxide nanoparticles:Synthesis,antiseptic activity and toxicity mechanism[J].Advances in Colloid and Interface Science,2017,249:37-52. |
18 | NOMAN M T, AMOR N, PETRU M.Synthesis and applications of ZnO nanostructures(ZONSs):A review[J].Critical Reviews in Solid State and Materials Sciences,2022,47(2):99-141. |
19 | WANG Xinjuan, ZHANG Qinglin, WAN Qiang,et al.Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity[J].The Journal of Physical Chemistry C,2011,115(6):2769-2775. |
20 | DENG Ziwei, CHEN Min, GU Guangxin,et al.A facile method to fabricate ZnO hollow spheres and their photocatalytic property[J].The Journal of Physical Chemistry B,2008,112(1):16-22. |
21 | SUN Genban, CAO Minhua, WANG Yonghui,et al.Anionic surfactant-assisted hydrothermal synthesis of high-aspect-ratio ZnO nanowires and their photoluminescence property[J].Materials Letters,2006,60(21/22):2777-2782. |
22 | DING Yong, XU Jia, CHEN Lei,et al.Pierced ZnO nanosheets via a template-free photopolymerization in microemulsion[J].Journal of Alloys and Compounds,2019,787:779-785. |
23 | LIM S K, HWANG S H, KIM S,et al.Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor[J].Sensors and Actuators B:Chemical,2011,160(1):94-98. |
24 | VAN DEN RUL H, MONDELAERS D, VAN BAEL M K,et al.Water-based wet chemical synthesis of(doped) ZnO nanostructures[J].Journal of Sol-Gel Science and Technology,2006,39(1):41-47. |
25 | LI Xiangcun, HE Gaohong, XIAO Gongkui,et al.Synthesis and morphology control of ZnO nanostructures in microemulsions[J].Journal of Colloid and Interface Science,2009,333(2):465- 473. |
26 | MOHAMAD S D, HASSANZADEH-TABRIZI S A, SAFFAR-TELURI A.Microemulsion synthesis,optical and photocatalytic properties of vanadium-doped nano ZnO[J].International Journal of Applied Ceramic Technology,2018,15(2):479-488. |
27 | SPANHEL L, ANDERSON M A.Semiconductor clusters in the sol-gel process:Quantized aggregation,gelation,and crystal growth in concentrated zinc oxide colloids[J].Journal of the American Chemical Society,1991,113(8):2826-2833. |
28 | BOKOV D, TURKI JALIL A, CHUPRADIT S,et al.Nanomaterial by sol-gel method:Synthesis and application[J].Advances in Materials Science and Engineering,2021,2021:5102014. |
29 | GÜLER Ö, GÜLER S H, BAŞGÖZ Ö,et al.Synthesis and characterization of ZnO-reinforced with graphene nanolayer nanocomposites:Electrical conductivity and optical band gap analysis[J].Materials Research Express,2019,6(9):095602. |
30 | VAFAEE M, GHAMSARI M S.Preparation and characterization of ZnO nanoparticles by a novel sol-gel route[J].Materials Letters,2007,61(14/15):3265-3268. |
31 | JIANG Xiuping, LIU Youzhi, GAO Yanyang,et al.Preparation of one-dimensional nanostructured ZnO[J].Particuology,2010,8(4):383-385. |
32 | SEID E T, DEJENE F B.Post-heat treatment effect on the properties of indium doped zinc oxide nanocrystals produced by the sol-gel method[J].Optical Materials Express,2020,10(11):2849-2865. |
33 | SEID E T, DEJENE F B.Controlled synthesis of in-doped ZnO:The effect of indium doping concentration[J].Journal of Materials Science:Materials in Electronics,2019,30(12):11833-11842. |
34 | SIRIN M, BALTAS H, KIRIS E,et al.Effect of annealing temperature on K-shell X-ray fluorescence parameters of zinc oxide thin films prepared by the sol-gel method[J].Spectroscopy Letters,2019,52(2):98-104. |
35 | SAJID M M, SHAD N A, JAVED Y,et al.Efficient photocatalytic and antimicrobial behaviour of zinc oxide nanoplates prepared by hydrothermal method[J].Journal of Cluster Science,2022,33(2):773-783. |
36 | FANG Yongling, LI Zhongyu, XU Song,et al.Optical properties and photocatalytic activities of spherical ZnO and flower-like ZnO structures synthesized by facile hydrothermal method[J].Journal of Alloys and Compounds,2013,575:359-363. |
37 | ANŽLOVAR A, MARINŠEK M, OREL Z C,et al.Basic zinc carbonate as a precursor in the solvothermal synthesis of nano-zinc oxide[J].Materials & Design,2015,86:347-353. |
38 | TRYFON P, SPERDOULI I, ADAMAKIS I D S,et al.Impact of coated zinc oxide nanoparticles on photosystem ii of tomato plan- ts[J].Materials,2023,16(17) :5846. |
39 | 杜庆波,方迎春,谢小雪,等.溶剂热法制备氧化锌微纳米材料及性能研究[J].黑龙江工业学院学报(综合版),2023,23(5):101-106. |
DU Qingbo, FANG Yingchun, XIE Xiaoxue,et al.On preparation and properties of zinc oxide micro-nano materials by solvothermal method[J].Journal of Heilongjiang University of Technology(Comprehensive Edition),2023,23(5):101-106. | |
40 | SUN Ye, GEORGE NDIFOR-ANGWAFOR N, JASON RILEY D,et al.Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth[J].Chemical Physics Letters,2006,431(4/5/6):352-357. |
41 | KUSUMAM T V A, SIRIL V S, MADHUSOODANAN K N,et al.NO2 gas sensing performance of zinc oxide nanostructures synthesized by surfactant assisted low temperature hydrothermal technique[J].Sensors and Actuators A:Physical,2021,318:112389. |
42 | SHARMA R K, KUMAR D, GHOSE R.Synthesis of nanocrystalline ZnO-NiO mixed metal oxide powder by homogeneous precipitation method[J].Ceramics International,2016,42(3):4090-4098. |
43 | HERRERA-RIVERA R, DE LA L OLVERA M, MALDONADO A.Synthesis of ZnO nanopowders by the homogeneous precipitation method:Use of taguchi’s method for analyzing the effect of different variables[J].Journal of Nanomaterials,2017,2017:1-9. |
44 | AIMABLE A, BUSCAGLIA M T, BUSCAGLIA V,et al.Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution[J].Journal of the European Ceramic Society,2010,30(2):591-598. |
45 | LU K, ZHAO Jingzhong.Equiaxed zinc oxide nanoparticle synthesis[J].Chemical Engineering Journal,2010,160(2):788-793. |
46 | SHARMA R K, GHOSE R.Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against candida albicans[J].Ceramics International,2015,41(1):967-975. |
47 | POURRAHIMI A M, LIU D, PALLON L K H,et al.Water-based synthesis and cleaning methods for high purity ZnO nanoparticl-es-comparing acetate,chloride,sulphate and nitrate zinc salt precursors[J].RSC Advances,2014,4(67):35568-35577. |
48 | 邸琬茗,宁文生,金杨福,等.均匀沉淀法制备碱式碳酸锌的过程研究[J].材料导报,2015,29(18):60-64. |
DI Wanming, NING Wensheng, JIN Yangfu,et al.Study on the preparation of zinc carbonate hydroxides by homogeneous precipitation method[J].Materials Review,2015,29(18):60-64. | |
49 | WANG Lingna, MUHAMMED M.Synthesis of zinc oxide nano-particles with controlled morphology[J].Journal of Materials Chemistry,1999,9(11):2871-2878. |
50 | GONG Yuan, WU Lin, LI Ji,et al.Modeling of multistep Ca2+ transfer in the carbonation system of CO2-NH4OH-CaSO4·2H2O-CaCO3 [J].Journal of Crystal Growth,2019,522:128-138. |
51 | 孙传琳,杨浪,饶峰,等.化学石膏资源化利用研究进展[J].矿产综合利用,2023.Doi:10.3969/j.issn.1000-6532 . |
SUN Chuanlin, YANG Lang, RAO Feng,et al.Research progress of chemical gypsum resource utilization[J].Multipurpose Utilization of Mineral Resources,2023.Doi:10.3969/j.issn.1000-6532 . | |
52 | WANG Yujun, ZHANG Chunling, BI Siwei,et al.Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor[J].Powder Technology,2010,202(1/2/3):130-136. |
53 | FANG Le, SUN Qian, DUAN Yonghong,et al.Preparation of transparent BaSO4 nanodispersions by high-gravity reactive precipitation combined with surface modification for transparent X-ray shielding nanocomposite films[J].Frontiers of Chemical Science and Engineering,2021,15(4):902-912. |
54 | 黄谢君.单分散纳米氧化锌及其透明复合材料的制备和性能研究[D].北京:北京化工大学,2019. |
HUANG Xiejun.Study on the preparation and properties of monodispersed zinc oxide and its nanocomposites[D].Beijing:Beijing University of Chemical Technology,2019. | |
55 | 杨第伦,李宗葆.多用途气泡液膜反应器:中国,1833769A[P].2009-10-14. |
56 | 杨第伦,李宗葆.一种制造纳米粒子材料的气泡液膜法:中国,1803272[P].2006-07-19. |
57 | 杨第伦.一种泡罩碟式搅拌器:中国,2690038Y[P].2005-04-06. |
58 | 姚鹤,曾能,丁宏铃,等.一种多项界面反应器:中国,115427138A[P].2022-12-02 |
[1] | 汪敏娟, 王重庆. 新型反应器在纳米颗粒制备中的应用研究进展[J]. 无机盐工业, 2024, 56(3): 19-27. |
[2] | 王松, 张建彬, 申玉芳, 覃庶宏, 王盛强, 张静冰. 次氧化锌火法脱氯制备高纯氧化锌的工艺研究[J]. 无机盐工业, 2023, 55(11): 47-52. |
[3] | 武鲁明, 于海斌, 王亚权. 多孔碳基非贵金属氧还原电催化剂研究进展[J]. 无机盐工业, 2023, 55(10): 13-23. |
[4] | 徐恩浩, 武开鹏. 纳米氧化铬的制备与应用研究进展[J]. 无机盐工业, 2023, 55(10): 24-34. |
[5] | 张哲,廖明宇,陈铭,喻珊珊,周康帝,李佳纯,张林锋,吴华东,郭嘉. CeO2-ZnO/KIT-6催化剂在光催化吸附脱硫中的应用[J]. 无机盐工业, 2022, 54(9): 143-149. |
[6] | 郝建英,胡涛,程冠吉,郭兵. 脱硫石膏掺杂氧化锌转晶制备高性能建筑石膏[J]. 无机盐工业, 2022, 54(6): 96-101. |
[7] | 卢晓敏,李雪梅,刘岚君,沈晓芳,梅毅,廉培超. 黑磷的液相法制备研究进展[J]. 无机盐工业, 2022, 54(3): 31-37. |
[8] | 周凯,潘国祥,李金花,夏盛杰,徐敏虹,沈辉,青木功荘. Al(OH)3@Zn(OH)2双层包覆氧化铁黄合成及其耐热性能研究[J]. 无机盐工业, 2022, 54(2): 50-53. |
[9] | 姚海威,毛瑞,王飞,朱祚峤. 转底炉氧化锌粉高值化利用研究[J]. 无机盐工业, 2022, 54(12): 119-125. |
[10] | 管志远,张晓伟,王觅堂,张栋梁,朱昌乐. 稀土元素铈钕共掺氧化锌对降解罗丹明B光催化性能的影响[J]. 无机盐工业, 2022, 54(10): 155-162. |
[11] | 左龙涛,李军,金央,班昌胜,陈明. ZIF-8制备原位碳掺杂氧化锌及其光催化性能研究[J]. 无机盐工业, 2022, 54(1): 101-108. |
[12] | 彭晓伟,王银斌,臧甲忠,于海斌. 金属改性甲醇芳构化催化剂的制备及性能研究[J]. 无机盐工业, 2021, 53(9): 104-108. |
[13] | 党莹. 纳米颗粒粉煤灰绿色混凝土的耐久性试验研究[J]. 无机盐工业, 2021, 53(7): 96-100. |
[14] | 蒋运才,李雪梅,吴兆贤,曹昌蝶,梅毅,廉培超. 黑磷的制备及储能应用研究进展[J]. 无机盐工业, 2021, 53(6): 59-71. |
[15] | 苏小莉,秦凤婷,蔡天聪,马春玉,汤长青. 不同碳酸盐沉淀剂热分解法制备纳米氧化锌[J]. 无机盐工业, 2019, 51(9): 36-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|