 
		无机盐工业 ›› 2024, Vol. 56 ›› Issue (12): 13-28.doi: 10.19964/j.issn.1006-4990.2024-0067
        
               		李峻西1,2( ), 解志鹏1,2, 刘云峰3, 马龙1,2, 陈嘉乐1,2, 张达1,2(
), 解志鹏1,2, 刘云峰3, 马龙1,2, 陈嘉乐1,2, 张达1,2( ), 杨斌1,2, 梁风1,2(
), 杨斌1,2, 梁风1,2( )
)
                  
        
        
        
        
    
收稿日期:2024-02-01
									
				
									
				
									
				
											出版日期:2024-12-10
									
				
											发布日期:2024-04-22
									
			通讯作者:
					张达(1989- ),男,讲师,主要从事等离子体冶金、材料制备与改性、新能源材料与器件等方面的研究;E-mail:zhangda@kust.edu.cn。作者简介:李峻西(1998— ),男,博士研究生,研究方向为电弧等离子体制备过渡金属硼化物;E-mail:610163547@qq.com。
				
							基金资助:
        
               		LI Junxi1,2( ), XIE Zhipeng1,2, LIU Yunfeng3, MA Long1,2, CHEN Jiale1,2, ZHANG Da1,2(
), XIE Zhipeng1,2, LIU Yunfeng3, MA Long1,2, CHEN Jiale1,2, ZHANG Da1,2( ), YANG Bin1,2, LIANG Feng1,2(
), YANG Bin1,2, LIANG Feng1,2( )
)
			  
			
			
			
                
        
    
Received:2024-02-01
									
				
									
				
									
				
											Published:2024-12-10
									
				
											Online:2024-04-22
									
			摘要:
金属硼化物因其具有优异的抗氧化性、高熔点、高硬度、高导热导电率和超导性等特性,在航空航天、超导和电磁波吸收领域有广阔的应用前景。然而,由于传统方法制备的金属硼化物存在颗粒尺寸大、产物纯度低、生产成本高和烧结性差等问题,导致其无法达到理想的应用性能。因此,针对以上问题概述了金属硼化物的结构、性质,详细介绍了金属硼化物不同制备方法的优缺点,综述了近几年国内外金属硼化物在超高温陶瓷、超导和高温吸波领域的研究进展,最后讨论了金属硼化物在超导领域中临界电流密度低、吸波领域中阻抗失配和超高温陶瓷领域中烧结性差、断裂韧性低的问题,并对其未来在粉末制备方法、陶瓷新型成材技术和机器模拟等方向进行了展望。
中图分类号:
李峻西, 解志鹏, 刘云峰, 马龙, 陈嘉乐, 张达, 杨斌, 梁风. 金属硼化物的制备及其在军工领域的基础应用研究进展[J]. 无机盐工业, 2024, 56(12): 13-28.
LI Junxi, XIE Zhipeng, LIU Yunfeng, MA Long, CHEN Jiale, ZHANG Da, YANG Bin, LIANG Feng. Research progress of preparation of metal borides and their military applications[J]. Inorganic Chemicals Industry, 2024, 56(12): 13-28.
 
												
												表1
几种制备方法制备金属硼化物的实例
| 制备方法 | 原料 | 制备条件 | 粒径及形状 | 产物 | 
|---|---|---|---|---|
| 碳热还原 | Fe2O3、Fe3O4、B2O3、C[ | 1 473 K、4.5 h | 39 nm | Fe2B | 
| H3BO3、ZrO2、炭黑、Fe或Co或Ni[ | 1 500~1 700 ℃、0.5 h | 晶须状 | ZrB2 | |
| H3BO3、Nb2O5、玉米淀粉[ | 1 800 ℃、1 h | 40~50 nm | NbB2 | |
| 硼/碳热还原 | HfO2、B4C、C[ | 焦耳加热 | 538 nm | HfB2 | 
| ZrO2、B4C、C[ | 焦耳加热 | 645 nm | ZrB2 | |
| Ta2O5、B4C、NaCl/KCl[ | 1 200 ℃、0.3 h | 长4.16 μm 纳米棒 | TaB2 | |
| ZrO2、B4C、C[ | 1 300 ℃、2 h;1 900 ℃、1 h | 陶瓷 | ZrB2 | |
| ZrOCl2·8H2O、B4C、C[ | 1 600 ℃、1 h | 长0.5~3 μm 棒状 | ZrB2 | |
| ZrOCl2·8H2O、B4C、C、 | 1 550 ℃、1 h | 长1 μm 棒状 | ZrB2 | |
| 硼热还原 | Nb2O5、B、NaCl/KCl[ | 1 000 ℃、1 h | 100 nm | NbB2 | 
| Ta2O5、B[ | 800 ℃、2 h;热水洗涤;1 550 ℃、1 h | 0.8 μm | TaB2 | |
| HfO2、B[ | 1 100 ℃、2 h;热水洗涤;1 550 ℃、1 h | 0.8 µm | HfB2 | |
| Nb2O5、B、NaCl/KCl[ | 800 ℃ | 61 nm | NbB2 | |
| Cr2O3、B、NaCl/KCl[ | 900 ℃、1 h | 104 nm | CrB2 | |
| 镁热还原 | TiO2、B2O3、Mg[ | 球磨2 h;0.5 mol/L HCl、2 h | 50~100 nm | TiB2 | 
| 自蔓延高温合成 | FeCl2、MgB2[ | 点燃 | 100~500 nm | FeB | 
| CoCl2、MgB2[ | 点燃 | 100~500 nm | CoB | |
| NiCl2、MgB2[ | 点燃 | 100~500 nm | NiB | |
| ZrO2、B2O3、Mg、NaCl[ | 点燃;1 mol/L HCl、2 h | 100 nm | ZrB2 | |
| Ta2O5、B、Mg[ | 点燃;HCl、80 ℃、1 h | 50~100 nm | TaB2 | |
| TiO2、B2O3、Mg、NaCl[ | 机械诱导;5.4 mol/L HCl、80 ℃、0.5 h | 140 nm | TiB2 | |
| 热等离子体 | Ti、B[ | n(Ti)∶n(B)=5∶1、4.1 g/min;Ar气氛 | 42 nm | TiB2 | 
| Ti、B[ | n(Ti)∶n(B)=3∶2、1 g/min;Ar气氛 | 20~45 nm | TiB2 | |
| YB4、B[ | n(Y)∶n(B)=1∶100、0.1 g/min;Ar、He气氛 | 50 nm | YB66 | |
| Nb、B[ | n(Nb)∶n(B)=1∶3、0.2 g/min;Ar、He气氛 | NbB2 | ||
| Fe、B[ | n(Fe)∶n(B)=1∶2、0.2 g/min;Ar、He气氛 | 34.5 nm | FeB | |
| Co、B[ | n(Co)∶n(B)=1∶2、0.2 g/min;Ar、He气氛 | 15 nm | CoB | 
| [1] | TONG Mingde, FU Qiangang, HU Dou,et al.Improvement of ablation resistance of CVD-HfC/SiC coating on hemisphere shaped C/C composites by introducing diffusion interface[J].Journal of the European Ceramic Society,2021,41(7):4067-4075. | 
| [2] | WANG Dingchuan, LEI Yu, JIAO Wei,et al.A review of helical carbon materials structure,synthesis and applications[J].Rare Metals,2021,40(1):3-19. | 
| [3] | XIA Qianshan, HAN Zhao, ZHANG Zhichun,et al.High temperature microwave absorbing materials[J].Journal of Materials Chemistry C,2023,11(14):4552-4569. | 
| [4] | ALBERT B, HILLEBRECHT H.Boron:Elementary challenge for experimenters and theoreticians[J].Angewandte Chemie(International Ed),2009,48(46):8640-8668. | 
| [5] | CHEN Hui, ZOU Xiaoxin.Intermetallic borides:Structures,synthesis and applications in electrocatalysis[J].Inorganic Chemistry Frontiers,2020,7(11):2248-2264. | 
| [6] | KIESSLING R, SAMUELSON O H, LINDSTEDT G,et al.The borides of manganese[J].Acta Chemica Scandinavica,1950,4:146- 159. | 
| [7] | AKOPOV G, YEUNG M T, KANER R B.Rediscovering the crystal chemistry of borides[J].Advanced Materials,2017,29(21):1604506. | 
| [8] | KAPFENBERGER C, ALBERT B, PÖTTGEN R,et al.Structure refinements of iron borides Fe2B and FeB[J].Zeitschrift Für Kristallographie-Crystalline Materials,2006,221(5/6/7):477-481. | 
| [9] | GUMENIUK R, BORRMANN H, LEITHE-JASPER A.Refinement of the crystal structures of trinickel boron,Ni3B,and tripalladium boron,Pd3B[J].Zeitschrift Für Kristallographie-New Crystal Structures,2006,221(4):425-426. | 
| [10] | RIABOV A B, YARTYS V A, HAUBACK B C,et al.Hydrogenation behaviour,neutron diffraction studies and microstructural characterisation of boron oxide-doped Zr-V alloys[J].Journal of Alloys and Compounds,1999,293:93-100. | 
| [11] | OKADA S, ATODA T, HIGASHI I.Structural investigation of Cr2B3,Cr3B4,and CrB by single-crystal diffractometry[J].Journal of Solid State Chemistry,1987,68(1):61-67. | 
| [12] | KAYHAN M, HILDEBRANDT E, FROTSCHER M,et al.Neutron diffraction and observation of superconductivity for tungsten borides,WB and W2B4 [J].Solid State Sciences,2012,14(11/12):1656-1659. | 
| [13] | CHEN Yanli, YE Yanping, TAO Qiang,et al.Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions[J].Catalysts,2021,11(11):1265. | 
| [14] | LI Qiuju, ZOU Xu, AI Xuan,et al.Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity[J].Advanced Energy Materials,2019,9(5):1803369. | 
| [15] | LUNDSTROM T.Structure,defects and properties of some refractory borides[J].Pure and Applied Chemistry,1985,57(10):1383-1390. | 
| [16] | BASU B, RAJU G B, SURI A K.Processing and properties of monolithic TiB2 based materials[J].International Materials Reviews,2006,51(6):352-374. | 
| [17] | NIU Haiyang, WANG Jiaqi, CHEN Xingqiu,et al.Structure,bonding,and possible superhardness of CrB4 [J].Physical Review B,2012,85(14):144116. | 
| [18] | KNAPPSCHNEIDER A, LITTERSCHEID C, BRGOCH J,et al.Manganese tetraboride,MnB4:High-temperature crystal structure,p-n transition,55Mn NMR spectroscopy,solid solutions,and mechanical properties[J].Chemistry-A European Journal,2015,21(22):8177-8181. | 
| [19] | CALLMER B.A single-crystal diffractometry investigation of scandium in β-rhombohedral boron[J].Journal of Solid State Chemistry,1978,23(3/4):391-398. | 
| [20] | PLACA S L, BINDER I, POST B.Binary dodecaborides[J].Journal of Inorganic and Nuclear Chemistry,1961,18:113-117. | 
| [21] | LA PLACA S J, POST B.The crystal structure of rhenium diboride[J].Acta Crystallographica,1962,15(2):97-99. | 
| [22] | ARONSSON B, LEDEN I, SUNNER S,et al.The crystal structure of RuB2,OsB2,and IrB1.35 and some general comments on the crystal chemistry of borides in the composition range MeB-MeB3 [J].Acta Chemica Scandinavica,1963,17:2036-2050. | 
| [23] | ITOH H, MATSUDAIRA T, NAKA S,et al.Reaction control of TiB2 formation from titanium metal and amorphous boron[J].Journal of Materials Science,1989,24(2):420-424. | 
| [24] | BOROVINSKAYA I P, MERZHANOV A G, NOVIKOV N P,et al.Gasless combustion of mixtures of powdered transition metals with boron[J].Combustion,Explosion and Shock Waves,1974,10(1):2-10. | 
| [25] | VOLKOVA L S, SHULGA Y M, SHILKIN S P.Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate[J].Russian Journal of General Chemistry,2012,82(5):819-821. | 
| [26] | SONG Shaolei, ZHANG Tong, XIE Chen,et al.Growth behavior of TiB2 hexagonal plates prepared via a molten-salt-mediated carbothermal reduction[J].Journal of the American Ceramic Society,2020,103(2):719-723. | 
| [27] | MORADI V, NIKZAD L, MOBASHERPOUR I,et al.Low temperature synthesis of Titanium diboride by carbothermal meth-od[J].Ceramics International,2018,44(16):19421-19426. | 
| [28] | KARTAL L.Singe phase iron boride(Fe2B) particle production from pickling wastes by one step carbothermic reduction[J].Journal of Sustainable Metallurgy,2023,9(4):1660-1669. | 
| [29] | KHANRA A K, PATHAK L C, GODKHINDI M M.Carbothermal synthesis of zirconium diboride(ZrB2) whiskers[J].Advances in Applied Ceramics,2007,106(3):155-160. | 
| [30] | GUI Tao, WANG Xingming, YANG Lei,et al.Synthesis and densification of zirconium diboride prepared by carbothermal reduction[J].Rare Metals,2018,37(12):1076-1081. | 
| [31] | MAEDA H, YOSHIKAWA T, KUSAKABE K,et al.Synthesis of ultrafine NbB2 powder by rapid carbothermal reduction in a vertical tubular reactor[J].Journal of Alloys and Compounds,1994,215(1/2):127-134. | 
| [32] | FAHRENHOLTZ W.The ZrB2 volatility diagram[J].Journal of the American Ceramic Society,2005,88:3509-3512. | 
| [33] | TAIBI A, GIL-GONZÁLEZ E, SÁNCHEZ-JIMÉNEZ P E,et al.Flash joule heating-boro/carbothermal reduction(FJH-BCTR):An approach for the instantaneous synthesis of transition metal diborides[J].Ceramics International,2024 | 
| [34] | LIU Delei, LIU Jianghao, YE Peikan,et al.Low-temperature,efficient synthesis of highly crystalline urchin-like tantalum diboride nanoflowers[J].Materials,2022,15(8):2799. | 
| [35] | WU Yuedong, ZHANG Guohua, WANG Yu,et al.Synthesis of submicrometric VB2 powders by a boro-carbothermal reduction route[J].Ceramics International,2019,45(2):2492-2497. | 
| [36] | WANG Shijie, YANG Yafeng, CUI Junyan,et al.Preparation and properties of porous ZrB2 ceramics via combining in situ boro/carbothermal reduction and partial sintering approach[J].Ceramics International,2022,48(18):27051-27063. | 
| [37] | CHEN Zhibo, ZHAO Xiaotong, LI Mingliang,et al.Synthesis of rod-like ZrB2 crystals by boro/carbothermal reduction[J].Ceramics International,2019,45(11):13726-13731. | 
| [38] | CHEN Zhibo, SUZUKI T S, WANG Hailong.Synthesis of zirconium boride(ZrB2) rod crystals through salt-assisted boro/carbothermal reduction[J].Ceramics International,2023,49(17):28030-28035. | 
| [39] | ARATI D S, MURTHY TAMMANA S R C, SONBER J K,et al.Studies on synthesis and densification of niobium diboride using carbothermic reduction and hot pressing[J].International Journal of Refractory Metals and Hard Materials,2023,112:106119. | 
| [40] | WANG Yu, WU Yuedong, PENG Ben,et al.A universal method for the synthesis of refractory metal diborides[J].Ceramics International,2021,47(10):14107-14114. | 
| [41] | LONG Ying, LIU Bo, LIN Shiming,et al.Preparation of tungsten diboride by a combination of boro/carbothermal reduction process and spark plasma sintering[J].Journal of the European Ceramic Society,2022,42(13):5229-5237. | 
| [42] | GUO Weiming, ZHANG Guojun, YOU Yang,et al.TiB2 powders synthesis by borothermal reduction in TiO2 under vacuum[J].Journal of the American Ceramic Society,2014,97(5):1359-1362. | 
| [43] | HOU Jingfeng, GAO Jianfei, KONG Lingbin.Niobium boride (NbB2):Salt-templated synthesis,pseudocapacitive electrode and lithium-ion capacitor applications[J].Journal of Alloys and Compounds,2024,978:173484. | 
| [44] | GUO Weiming, ZHANG Guojun.New borothermal reduction route to synthesize submicrometric ZrB2 powders with low oxygen content[J].Journal of the American Ceramic Society,2011,94(11):3702-3705. | 
| [45] | GUO Weiming, ZENG Lingyong, SU Guokang,et al.Synthesis of TaB2 powders by borothermal reduction[J].Journal of the American Ceramic Society,2017,100(6):2368-2372. | 
| [46] | WEI Tingting, LIU Zetan, REN Donglou,et al.Low temperature synthesis of TaB2 nanorods by molten-salt assisted borothermal reduction[J].Journal of the American Ceramic Society,2018,101(1):45-49. | 
| [47] | GUO Weiming, YANG Zhenguo, ZHANG Guojun.Synthesis of submicrometer HfB2 powder and its densification[J].Materials Letters,2012,83:52-55. | 
| [48] | RAN Songlin, SUN Huifeng, WEI Yanan,et al.Low-temperature synthesis of nanocrystalline NbB2 powders by borothermal reduction in molten salt[J].Journal of the American Ceramic Society,2014,97(11):3384-3387. | 
| [49] | LIU Zetan, WEI Ya’nan, MENG Xin,et al.Synthesis of CrB2 powders at 800 ℃ under ambient pressure[J].Ceramics International,2017,43(1):1628-1631. | 
| [50] | LIU Qiuyu, SUN Shikuan, ZENG Lingyong,et al.Improvement of sinterability and mechanical properties of ZrB2 ceramics by the modified borothermal reduction methods[J].Journal of the European Ceramic Society,2020,40(12):3844-3850. | 
| [51] | LIU Da, LIU Honghua, NING Shanshan,et al.Chrysanthemum-like high-entropy diboride nanoflowers:A new class of high-entropy nanomaterials[J].Journal of Advanced Ceramics,2020,9(3):339-348. | 
| [52] | LIU Da, CHU Yanhui, YE Beilin,et al.Spontaneous growth of hexagonal ZrB2 nanoplates driven by a screw dislocation mechanism[J].CrystEngComm,2018,20(47):7637-7641. | 
| [53] | WU Yuedong, ZHANG Guohua, WANG Yu,et al.Low-temperature synthesis of VB2 nanopowders by a molten-salt-assisted borothermal reduction process[J].Metallurgical and Materials Transactions B,2019,50(4):1696-1703. | 
| [54] | RICCERI R, MATTEAZZI P.A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis[J].Materials Science and Engineering:A,2004,379(1/2):341-346. | 
| [55] | WELHAM N J.Formation of nanometric TiB2 from TiO2 [J].Journal of the American Ceramic Society,2000,83(5):1290-1292. | 
| [56] | BAO Ke, Massey J, HUANG Juntong,et al.Low-temperature synthesis of hafnium diboride powder Via magnesiothermic reduction in molten salt [J].Proceedings of the 41st International Conference on Advanced Ceramics and Composites.2018,38(3):117-130. | 
| [57] | BAO Ke, WEN Yan, KHANGKHAMANO M,et al.Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt[J].Journal of the American Ceramic Society,2017,100(5):2266-2272. | 
| [58] | ZHANG Shaowei, KHANGKHAMANO M, ZHANG Haijun,et al.Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction[J].Journal of the American Ceramic Society,2014,97(6):1686-1688. | 
| [59] | ABEYSINGHE J P, KÖLLN A F, GILLAN E G.Rapid and energetic solid-state metathesis reactions for iron,cobalt,and nickel boride formation and their investigation as bifunctional water splitting electrocatalysts[J].ACS Materials Au,2022,2(4):489-504. | 
| [60] | LICHERI R, MUSA C, ORRÙ R,et al.Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering[J].Journal of Alloys and Compounds,2016,663:351-359. | 
| [61] | ÇAMURLU H E, MAGLIA F.Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis[J].Journal of the European Ceramic Society,2009,29(8):1501-1506. | 
| [62] | CORDOVA S, SHAFIROVICH E.Toward a better conversion in magnesiothermic SHS of zirconium diboride[J].Journal of Materials Science,2018,53(19):13600-13616. | 
| [63] | JALALY M, GOTOR F J.A new combustion route for synthesis of TaB2 nanoparticles[J].Ceramics International,2018,44(1):1142-1146. | 
| [64] | NASIRI-TABRIZI B, ADHAMI T, EBRAHIMI-KAHRIZSANGI R.Effect of processing parameters on the formation of TiB2 nanopowder by mechanically induced self-sustaining reaction[J].Ceramics International,2014,40(5):7345-7354. | 
| [65] | MILLET P, HWANG T.Preparation of TiB2 and ZrB2 influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia[J].Journal of Materials Science,1996,31(2):351-355. | 
| [66] | BOULOS M I, FAUCHAIS P, PFENDER E.Thermal plasmas:fundamentals and applications[M].New York:Plenum Press,1994:37. | 
| [67] | 张达.碳纳米材料的直流电弧法制备及其电催化性能研究[D].昆明:昆明理工大学,2021. | 
| ZHANG Da.Preparation of carbon nano-materials by DC arc method and its electrocatalytic properties[D].Kunming:Kunming University of Science and Technology,2021. | |
| [68] | DE ARAÚJO L N M, SOUSA B S, DE ARAÚJO A G F,et al.ZnWO4 nanocrystals prepared by thermal plasma processing[J].Journal of Materials Science,2023,58(16):6944-6971. | 
| [69] | XIE Zhipeng, TANG Zhenggang, ZHANG Da,et al.Hydrogen arc plasma promotes the purification and nanoparticle preparation of tungsten[J].International Journal of Refractory Metals and Hard Materials,2022,105:105815. | 
| [70] | ZHANG Da, YE Kai, YAO Yaochun,et al.Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber[J].Carbon,2019,142:278-284. | 
| [71] | 叶凯,梁风,姚耀春,等.纳米镍粉的制备与应用的发展趋势[J].化工进展,2019,38(5):2252-2261. | 
| YE Kai, LIANG Feng, YAO Yaochun,et al.Development trend of preparation and application of nickel nanopowder[J].Chemical Industry and Engineering Progress,2019,38(5):2252-2261. | |
| [72] | 张达,戴永年,梁风.电弧法制备石墨烯:工艺参数,生长机理,存在的问题与对策[J].材料导报,2017,31(9):64-71. | 
| ZHANG Da, DAI Yongnian, LIANG Feng.Preparation of graphene by arc discharge method:Process conditions,growth mechanisms,inadequacies and countermeasures[J].Materials Review,2017,31(9):64-71. | |
| [73] | ZHOU Bing, WANG Yiming, LIU Zhubo,et al.Effect of modulation ratio on microstructure and tribological properties of TiAlN/TiAlCN multilayer coatings prepared by multi-excitation source plasma[J].Vacuum,2023,211:111917. | 
| [74] | HOU Shengping, XIE Zhipeng, ZHANG Da,et al.High-purity graphene and carbon nanohorns prepared by base-acid treated waste tires carbon via direct current arc plasma[J].Environmental Research,2023,238:117071. | 
| [75] | TANG Zhenggang, HOU Minjie, HE Xin,et al.Integrated purification of gadolinium and preparation of Gd2O3 nanoparticles by DC arc plasma[J].Journal of Rare Earths,2021,39(12):1574-1578. | 
| [76] | 张达,叶凯,唐政刚,等.等离子体冶金的现状与发展[J].中国有色金属学报,2021,31(7):1907-1921. | 
| ZHANG Da, YE Kai, TANG Zhenggang,et al.Development and status of plasma metallurgy[J].The Chinese Journal of Nonferrous Metals,2021,31(7):1907-1921. | |
| [77] | CHENG Yingying, SHIGETA M, CHOI S,et al.Formation mechanism of titanium boride nanoparticles by RF induction thermal plasma[J].Chemical Engineering Journal,2012,183:483-491. | 
| [78] | CHOI S, MATSUO J, CHENG Yingying,et al.Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma[J].Journal of Nanoparticle Research,2013,15(8):1820. | 
| [79] | OH J H, KIM M, LEE Y H,et al.Synthesis of cobalt boride nanoparticles and h-BN nanocage encapsulation by thermal plasma[J].Ceramics International,2020,46(18):28792-28799. | 
| [80] | OH J H, GWON S H, KIM T H,et al.Synthesis of titanium boride nanoparticles and fabrication of flexible material for radiation shielding[J].Current Applied Physics,2021,31:151-157. | 
| [81] | CHENG Yingying, WATANABE T.Synthesis of titanium boride nanoparticles by induction thermal plasmas[J].Journal of Chemical Engineering of Japan,2011,44(8):583-589. | 
| [82] | CHOI S, MATSUO J, WATANABE T.Synthesis of AlB12 and YB66 nanoparticles by RF thermal plasmas[J].Journal of Physics:Conference Series,2013,441:012030. | 
| [83] | CHENG Yingying, CHOI S, WATANABE T.Synthesis of niobium boride nanoparticle by RF thermal plasma[J].Journal of Physics:Conference Series,2013,441:012031. | 
| [84] | CHENG Yingying, CHOI S, WATANABE T.Effect of nucleation temperature and heat transfer on synthesis of Ti and Fe boride nanoparticles in RF thermal plasmas[J].Powder Technology,2013,246:210-217. | 
| [85] | CHOI S, LAPITAN L D S, CHENG Yingying,et al.Synthesis of cobalt boride nanoparticles using RF thermal plasma[J].Advanced Powder Technology,2014,25(1):365-371. | 
| [86] | 黄庆红.新型电子材料在军事装备中的应用前景[C]//中国电子学会第十六届电子元件学术年会论文集.昆山,2010:71-80. | 
| [87] | 梁晓宇,李海涛,翟蕾,等.高温超导带材制备工艺的发展现状[J].低温与超导,2019,47(8):1-9. | 
| LIANG Xiaoyu, LI Haitao, ZHAI Lei,et al.The present situation of the preparation process for high-temperature superconducting tapes[J].Cryogenics & Superconductivity,2019,47(8):1-9. | |
| [88] | LIANG Hao, PATEL D, SHAHBAZI M,et al.Recent progress in MgB2 superconducting joint technology[J].Journal of Magnesium and Alloys,2023,11(7):2217-2229. | 
| [89] | CHOI H J, ROUNDY D, SUN Hong,et al.The origin of the anomalous superconducting properties of MgB2 [J].Nature,2002,418(6899):758-760. | 
| [90] | KUMAKURA H.Development of high performance MgB2 tapes and wires[J].Journal of the Physical Society of Japan,2012,81(1):011010. | 
| [91] | 闫果,王庆阳,刘国庆,等.二硼化镁超导线带材及磁体应用研究进展[J].中国材料进展,2013,32(9):550-561. | 
| YAN Guo, WANG Qingyang, LIU Guoqing,et al.Research progress of MgB2 superconducting wires and tapes and superconducting magnet application[J].Materials China,2013,32(9):550- 561. | |
| [92] | PATEL D, MATSUMOTO A, KUMAKURA H,et al.Superconducting joining concept for internal magnesium diffusion-processed magnesium diboride wires[J].ACS Applied Materials & Interfaces,2021,13(2):3349-3357. | 
| [93] | MA Qingshuang, PENG Junming, MA Zongqing,et al.Improved grain connectivity and critical current density in ex-situ MgB2 superconductors prepared by two-step sintering[J].Materials Chemistry and Physics,2018,204:62-66. | 
| [94] | DADIEL J L, NAIK S P K, PĘCZKOWSKI P,et al.Synthesis of dense MgB2 superconductor via in situ and ex situ spark plasma sintering method[J].Materials,2021,14(23):7395. | 
| [95] | MATTHEWS G B, MOUSAVI T, SANTRA S,et al.Improving the connectivity of MgB2 bulk superconductors by a novel liquid phase sintering process[J].Superconductor Science and Technology,2022,35(6):065005. | 
| [96] | NI Dewei, CHENG Yuan, ZHANG Jiaping,et al.Advances in ultra-high temperature ceramics,composites,and coatings[J].Journal of Advanced Ceramics,2022,11(1):1-56. | 
| [97] | WYATT B C, NEMANI S K, HILMAS G E,et al.Ultra-high temperature ceramics for extreme environments[J].Nature Reviews Materials,2023. | 
| [98] | ZHOU Yanchun, XIANG Huimin, FENG Zhihai,et al.General trends in electronic structure,stability,chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM=transition metal)[J].Journal of Materials Science & Technology,2015,31(3):285-294. | 
| [99] | NEELAKANTA B P S.Handbook of electromagnetic materials:Monolithic and composite versions and their applications[M].Boca Raton,Fla.:CRC Press,1995. | 
| [100] | ZHU Lili, WU Wenwen, CHEN Jingjing,et al.High-performance electromagnetic wave absorption by two-dimensional mesoporous monolayer Ti3C2T x MXene[J].Chemical Engineering Journal,2024,488:150649. | 
| [101] | ZHANG Weidong, ZHANG Xue, ZHU Qing,et al.High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber[J].Journal of Colloid and Interface Science,2021,586:457-468. | 
| [102] | JIAN Xian, TIAN Wei, LI Jinyao,et al.High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption[J].ACS Applied Materials & Interfaces,2019,11(17):15869-15880. | 
| [103] | ZHANG Haiming, ZHAO Biao, DAI Fuzhi,et al.(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B:A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band[J].Journal of Materials Science & Technology,2021,77:58-65. | 
| [104] | GONG Yubo, YANG Zhigang, WEI Xuguang,et al.Synthesis and electromagnetic wave absorbing properties of high-entropy metal diboride-silicon carbide composite powders[J].Journal of Materials Science,2022,57(20):9218-9230. | 
| [105] | ZHANG Weiming, DAI Fuzhi, XIANG Huimin,et al.Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides(HE TMB2)[J].Journal of Advanced Ceramics,2021,10(6):1299-1316. | 
| [106] | ZHANG Weiming, ZHAO Biao, XIANG Huimin,et al.One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides(HE REB6) and high entropy rare earth hexaborides/borates(HE REB6/HE REBO3) composite powders[J].Journal of Advanced Ceramics,2021,10(1):62-77. | 
| [107] | ZHANG Weiming, ZHAO Biao, NI Na,et al.High entropy rare earth hexaborides/tetraborides(HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J].Journal of Materials Science & Technology,2021,87:155-166. | 
| [108] | MENG Jiawei, FANG Huiyi, WANG Hongyu,et al.Effects of refractory metal additives on diboride-based ultra-high temperature ceramics:A review[J].International Journal of Applied Ceramic Technology,2023,20(3):1350-1370. | 
| [109] | GUO Wenjian, WANG Lingyu, ZHU Li’an,et al.Exploration of high-temperature oxidation resistance laws in ultra-high temperature boride ceramics through data-driven approaches[J].Corrosion Science,2024,230:111943. | 
| [110] | REZAIE A, FAHRENHOLTZ W G, HILMAS G E.Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1 500 ℃[J].Journal of the European Ceramic Society,2007,27(6):2495-2501. | 
| [111] | GOLLA B R, THIMMAPPA S K.Comparative study on microstructure and oxidation behaviour of ZrB2-20% SiC ceramics reinforced with Si3N4/Ta additives[J].Journal of Alloys and Compounds,2019,797:92-100. | 
| [112] | JIN Xiaochao, LI Pan, HOU Cheng,et al.Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress[J].Ceramics International,2019,45(6):7278-7285. | 
| [113] | CHEN Bowen, NI Dewei, BAO Weichao,et al.Engineering Cf/ZrB2-SiC-Y2O3 for thermal structures of hypersonic vehicles with excellent long-term ultrahigh temperature ablation resistance[J].Advanced Science,2023,10(34):e2304254. | 
| [114] | KIM M, OH J H, KIM T H,et al.Synthesis of metal boride nanoparticles using triple thermal plasma jet system[J].Journal of Nanoscience and Nanotechnology,2019,19(10):6264-6270. | 
| [1] | 张理元,沈如倩,阳金菊,李燕,税亿,苏敏. 锂离子筛研究进展[J]. 无机盐工业, 2022, 54(5): 28-37. | 
| [2] | 董家丽, 王露浔, 李 剑, 杨丽娜, 徐 龙, 孙宇萌. 双介孔二氧化硅制备研究进展[J]. 无机盐工业, 2014, 46(6): 17-. | 
| [3] | 张建刚, 黄春银, 黄海英, 刘少印, 程化鹏, 麻 晖. 太阳能级多晶硅制备进展[J]. 无机盐工业, 2013, 45(12): 6-. | 
| [4] | 韩东战, 尹中林, 王建立 . 高纯氧化铝制备技术及应用研究进展[J]. 无机盐工业, 2012, 44(9): 1-. | 
| [5] | 徐金尧, 明大增, 李志祥, 何宏亮. 氟化镁的制备方法[J]. 无机盐工业, 2011, 43(9): 8-. | 
| [6] | 彭爱国, 贺周初, 肖伟, 丁雄磊, 庄新娟. 化学二氧化锰研究进展[J]. 无机盐工业, 2011, 43(3): 8-. | 
| [7] | 李素英;钱海燕. 白炭黑的制备与应用现状[J]. 无机盐工业, 2008, 0(1): 0-0. | 
| [8] | 毛金龙;郭胜惠;彭金辉;张利波;张世敏;陈 菓. 二氧化锆的相稳定及其制备方法[J]. 无机盐工业, 2008, 0(1): 0-0. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
| 
 | ||
