无机盐工业 ›› 2024, Vol. 56 ›› Issue (12): 13-28.doi: 10.19964/j.issn.1006-4990.2024-0067
李峻西1,2(), 解志鹏1,2, 刘云峰3, 马龙1,2, 陈嘉乐1,2, 张达1,2(
), 杨斌1,2, 梁风1,2(
)
收稿日期:
2024-02-01
出版日期:
2024-12-10
发布日期:
2024-04-22
通讯作者:
张达(1989- ),男,讲师,主要从事等离子体冶金、材料制备与改性、新能源材料与器件等方面的研究;E-mail:zhangda@kust.edu.cn。作者简介:
李峻西(1998— ),男,博士研究生,研究方向为电弧等离子体制备过渡金属硼化物;E-mail:610163547@qq.com。
基金资助:
LI Junxi1,2(), XIE Zhipeng1,2, LIU Yunfeng3, MA Long1,2, CHEN Jiale1,2, ZHANG Da1,2(
), YANG Bin1,2, LIANG Feng1,2(
)
Received:
2024-02-01
Published:
2024-12-10
Online:
2024-04-22
摘要:
金属硼化物因其具有优异的抗氧化性、高熔点、高硬度、高导热导电率和超导性等特性,在航空航天、超导和电磁波吸收领域有广阔的应用前景。然而,由于传统方法制备的金属硼化物存在颗粒尺寸大、产物纯度低、生产成本高和烧结性差等问题,导致其无法达到理想的应用性能。因此,针对以上问题概述了金属硼化物的结构、性质,详细介绍了金属硼化物不同制备方法的优缺点,综述了近几年国内外金属硼化物在超高温陶瓷、超导和高温吸波领域的研究进展,最后讨论了金属硼化物在超导领域中临界电流密度低、吸波领域中阻抗失配和超高温陶瓷领域中烧结性差、断裂韧性低的问题,并对其未来在粉末制备方法、陶瓷新型成材技术和机器模拟等方向进行了展望。
中图分类号:
李峻西, 解志鹏, 刘云峰, 马龙, 陈嘉乐, 张达, 杨斌, 梁风. 金属硼化物的制备及其在军工领域的基础应用研究进展[J]. 无机盐工业, 2024, 56(12): 13-28.
LI Junxi, XIE Zhipeng, LIU Yunfeng, MA Long, CHEN Jiale, ZHANG Da, YANG Bin, LIANG Feng. Research progress of preparation of metal borides and their military applications[J]. Inorganic Chemicals Industry, 2024, 56(12): 13-28.
表1
几种制备方法制备金属硼化物的实例
制备方法 | 原料 | 制备条件 | 粒径及形状 | 产物 |
---|---|---|---|---|
碳热还原 | Fe2O3、Fe3O4、B2O3、C[ | 1 473 K、4.5 h | 39 nm | Fe2B |
H3BO3、ZrO2、炭黑、Fe或Co或Ni[ | 1 500~1 700 ℃、0.5 h | 晶须状 | ZrB2 | |
H3BO3、Nb2O5、玉米淀粉[ | 1 800 ℃、1 h | 40~50 nm | NbB2 | |
硼/碳热还原 | HfO2、B4C、C[ | 焦耳加热 | 538 nm | HfB2 |
ZrO2、B4C、C[ | 焦耳加热 | 645 nm | ZrB2 | |
Ta2O5、B4C、NaCl/KCl[ | 1 200 ℃、0.3 h | 长4.16 μm 纳米棒 | TaB2 | |
ZrO2、B4C、C[ | 1 300 ℃、2 h;1 900 ℃、1 h | 陶瓷 | ZrB2 | |
ZrOCl2·8H2O、B4C、C[ | 1 600 ℃、1 h | 长0.5~3 μm 棒状 | ZrB2 | |
ZrOCl2·8H2O、B4C、C、 | 1 550 ℃、1 h | 长1 μm 棒状 | ZrB2 | |
硼热还原 | Nb2O5、B、NaCl/KCl[ | 1 000 ℃、1 h | 100 nm | NbB2 |
Ta2O5、B[ | 800 ℃、2 h;热水洗涤;1 550 ℃、1 h | 0.8 μm | TaB2 | |
HfO2、B[ | 1 100 ℃、2 h;热水洗涤;1 550 ℃、1 h | 0.8 µm | HfB2 | |
Nb2O5、B、NaCl/KCl[ | 800 ℃ | 61 nm | NbB2 | |
Cr2O3、B、NaCl/KCl[ | 900 ℃、1 h | 104 nm | CrB2 | |
镁热还原 | TiO2、B2O3、Mg[ | 球磨2 h;0.5 mol/L HCl、2 h | 50~100 nm | TiB2 |
自蔓延高温合成 | FeCl2、MgB2[ | 点燃 | 100~500 nm | FeB |
CoCl2、MgB2[ | 点燃 | 100~500 nm | CoB | |
NiCl2、MgB2[ | 点燃 | 100~500 nm | NiB | |
ZrO2、B2O3、Mg、NaCl[ | 点燃;1 mol/L HCl、2 h | 100 nm | ZrB2 | |
Ta2O5、B、Mg[ | 点燃;HCl、80 ℃、1 h | 50~100 nm | TaB2 | |
TiO2、B2O3、Mg、NaCl[ | 机械诱导;5.4 mol/L HCl、80 ℃、0.5 h | 140 nm | TiB2 | |
热等离子体 | Ti、B[ | n(Ti)∶n(B)=5∶1、4.1 g/min;Ar气氛 | 42 nm | TiB2 |
Ti、B[ | n(Ti)∶n(B)=3∶2、1 g/min;Ar气氛 | 20~45 nm | TiB2 | |
YB4、B[ | n(Y)∶n(B)=1∶100、0.1 g/min;Ar、He气氛 | 50 nm | YB66 | |
Nb、B[ | n(Nb)∶n(B)=1∶3、0.2 g/min;Ar、He气氛 | NbB2 | ||
Fe、B[ | n(Fe)∶n(B)=1∶2、0.2 g/min;Ar、He气氛 | 34.5 nm | FeB | |
Co、B[ | n(Co)∶n(B)=1∶2、0.2 g/min;Ar、He气氛 | 15 nm | CoB |
[1] | TONG Mingde, FU Qiangang, HU Dou,et al.Improvement of ablation resistance of CVD-HfC/SiC coating on hemisphere shaped C/C composites by introducing diffusion interface[J].Journal of the European Ceramic Society,2021,41(7):4067-4075. |
[2] | WANG Dingchuan, LEI Yu, JIAO Wei,et al.A review of helical carbon materials structure,synthesis and applications[J].Rare Metals,2021,40(1):3-19. |
[3] | XIA Qianshan, HAN Zhao, ZHANG Zhichun,et al.High temperature microwave absorbing materials[J].Journal of Materials Chemistry C,2023,11(14):4552-4569. |
[4] | ALBERT B, HILLEBRECHT H.Boron:Elementary challenge for experimenters and theoreticians[J].Angewandte Chemie(International Ed),2009,48(46):8640-8668. |
[5] | CHEN Hui, ZOU Xiaoxin.Intermetallic borides:Structures,synthesis and applications in electrocatalysis[J].Inorganic Chemistry Frontiers,2020,7(11):2248-2264. |
[6] | KIESSLING R, SAMUELSON O H, LINDSTEDT G,et al.The borides of manganese[J].Acta Chemica Scandinavica,1950,4:146- 159. |
[7] | AKOPOV G, YEUNG M T, KANER R B.Rediscovering the crystal chemistry of borides[J].Advanced Materials,2017,29(21):1604506. |
[8] | KAPFENBERGER C, ALBERT B, PÖTTGEN R,et al.Structure refinements of iron borides Fe2B and FeB[J].Zeitschrift Für Kristallographie-Crystalline Materials,2006,221(5/6/7):477-481. |
[9] | GUMENIUK R, BORRMANN H, LEITHE-JASPER A.Refinement of the crystal structures of trinickel boron,Ni3B,and tripalladium boron,Pd3B[J].Zeitschrift Für Kristallographie-New Crystal Structures,2006,221(4):425-426. |
[10] | RIABOV A B, YARTYS V A, HAUBACK B C,et al.Hydrogenation behaviour,neutron diffraction studies and microstructural characterisation of boron oxide-doped Zr-V alloys[J].Journal of Alloys and Compounds,1999,293:93-100. |
[11] | OKADA S, ATODA T, HIGASHI I.Structural investigation of Cr2B3,Cr3B4,and CrB by single-crystal diffractometry[J].Journal of Solid State Chemistry,1987,68(1):61-67. |
[12] | KAYHAN M, HILDEBRANDT E, FROTSCHER M,et al.Neutron diffraction and observation of superconductivity for tungsten borides,WB and W2B4 [J].Solid State Sciences,2012,14(11/12):1656-1659. |
[13] | CHEN Yanli, YE Yanping, TAO Qiang,et al.Constructing 1D boron chains in the structure of transition metal monoborides for hydrogen evolution reactions[J].Catalysts,2021,11(11):1265. |
[14] | LI Qiuju, ZOU Xu, AI Xuan,et al.Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity[J].Advanced Energy Materials,2019,9(5):1803369. |
[15] | LUNDSTROM T.Structure,defects and properties of some refractory borides[J].Pure and Applied Chemistry,1985,57(10):1383-1390. |
[16] | BASU B, RAJU G B, SURI A K.Processing and properties of monolithic TiB2 based materials[J].International Materials Reviews,2006,51(6):352-374. |
[17] | NIU Haiyang, WANG Jiaqi, CHEN Xingqiu,et al.Structure,bonding,and possible superhardness of CrB4 [J].Physical Review B,2012,85(14):144116. |
[18] | KNAPPSCHNEIDER A, LITTERSCHEID C, BRGOCH J,et al.Manganese tetraboride,MnB4:High-temperature crystal structure,p-n transition,55Mn NMR spectroscopy,solid solutions,and mechanical properties[J].Chemistry-A European Journal,2015,21(22):8177-8181. |
[19] | CALLMER B.A single-crystal diffractometry investigation of scandium in β-rhombohedral boron[J].Journal of Solid State Chemistry,1978,23(3/4):391-398. |
[20] | PLACA S L, BINDER I, POST B.Binary dodecaborides[J].Journal of Inorganic and Nuclear Chemistry,1961,18:113-117. |
[21] | LA PLACA S J, POST B.The crystal structure of rhenium diboride[J].Acta Crystallographica,1962,15(2):97-99. |
[22] | ARONSSON B, LEDEN I, SUNNER S,et al.The crystal structure of RuB2,OsB2,and IrB1.35 and some general comments on the crystal chemistry of borides in the composition range MeB-MeB3 [J].Acta Chemica Scandinavica,1963,17:2036-2050. |
[23] | ITOH H, MATSUDAIRA T, NAKA S,et al.Reaction control of TiB2 formation from titanium metal and amorphous boron[J].Journal of Materials Science,1989,24(2):420-424. |
[24] | BOROVINSKAYA I P, MERZHANOV A G, NOVIKOV N P,et al.Gasless combustion of mixtures of powdered transition metals with boron[J].Combustion,Explosion and Shock Waves,1974,10(1):2-10. |
[25] | VOLKOVA L S, SHULGA Y M, SHILKIN S P.Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate[J].Russian Journal of General Chemistry,2012,82(5):819-821. |
[26] | SONG Shaolei, ZHANG Tong, XIE Chen,et al.Growth behavior of TiB2 hexagonal plates prepared via a molten-salt-mediated carbothermal reduction[J].Journal of the American Ceramic Society,2020,103(2):719-723. |
[27] | MORADI V, NIKZAD L, MOBASHERPOUR I,et al.Low temperature synthesis of Titanium diboride by carbothermal meth-od[J].Ceramics International,2018,44(16):19421-19426. |
[28] | KARTAL L.Singe phase iron boride(Fe2B) particle production from pickling wastes by one step carbothermic reduction[J].Journal of Sustainable Metallurgy,2023,9(4):1660-1669. |
[29] | KHANRA A K, PATHAK L C, GODKHINDI M M.Carbothermal synthesis of zirconium diboride(ZrB2) whiskers[J].Advances in Applied Ceramics,2007,106(3):155-160. |
[30] | GUI Tao, WANG Xingming, YANG Lei,et al.Synthesis and densification of zirconium diboride prepared by carbothermal reduction[J].Rare Metals,2018,37(12):1076-1081. |
[31] | MAEDA H, YOSHIKAWA T, KUSAKABE K,et al.Synthesis of ultrafine NbB2 powder by rapid carbothermal reduction in a vertical tubular reactor[J].Journal of Alloys and Compounds,1994,215(1/2):127-134. |
[32] | FAHRENHOLTZ W.The ZrB2 volatility diagram[J].Journal of the American Ceramic Society,2005,88:3509-3512. |
[33] | TAIBI A, GIL-GONZÁLEZ E, SÁNCHEZ-JIMÉNEZ P E,et al.Flash joule heating-boro/carbothermal reduction(FJH-BCTR):An approach for the instantaneous synthesis of transition metal diborides[J].Ceramics International,2024 |
[34] | LIU Delei, LIU Jianghao, YE Peikan,et al.Low-temperature,efficient synthesis of highly crystalline urchin-like tantalum diboride nanoflowers[J].Materials,2022,15(8):2799. |
[35] | WU Yuedong, ZHANG Guohua, WANG Yu,et al.Synthesis of submicrometric VB2 powders by a boro-carbothermal reduction route[J].Ceramics International,2019,45(2):2492-2497. |
[36] | WANG Shijie, YANG Yafeng, CUI Junyan,et al.Preparation and properties of porous ZrB2 ceramics via combining in situ boro/carbothermal reduction and partial sintering approach[J].Ceramics International,2022,48(18):27051-27063. |
[37] | CHEN Zhibo, ZHAO Xiaotong, LI Mingliang,et al.Synthesis of rod-like ZrB2 crystals by boro/carbothermal reduction[J].Ceramics International,2019,45(11):13726-13731. |
[38] | CHEN Zhibo, SUZUKI T S, WANG Hailong.Synthesis of zirconium boride(ZrB2) rod crystals through salt-assisted boro/carbothermal reduction[J].Ceramics International,2023,49(17):28030-28035. |
[39] | ARATI D S, MURTHY TAMMANA S R C, SONBER J K,et al.Studies on synthesis and densification of niobium diboride using carbothermic reduction and hot pressing[J].International Journal of Refractory Metals and Hard Materials,2023,112:106119. |
[40] | WANG Yu, WU Yuedong, PENG Ben,et al.A universal method for the synthesis of refractory metal diborides[J].Ceramics International,2021,47(10):14107-14114. |
[41] | LONG Ying, LIU Bo, LIN Shiming,et al.Preparation of tungsten diboride by a combination of boro/carbothermal reduction process and spark plasma sintering[J].Journal of the European Ceramic Society,2022,42(13):5229-5237. |
[42] | GUO Weiming, ZHANG Guojun, YOU Yang,et al.TiB2 powders synthesis by borothermal reduction in TiO2 under vacuum[J].Journal of the American Ceramic Society,2014,97(5):1359-1362. |
[43] | HOU Jingfeng, GAO Jianfei, KONG Lingbin.Niobium boride (NbB2):Salt-templated synthesis,pseudocapacitive electrode and lithium-ion capacitor applications[J].Journal of Alloys and Compounds,2024,978:173484. |
[44] | GUO Weiming, ZHANG Guojun.New borothermal reduction route to synthesize submicrometric ZrB2 powders with low oxygen content[J].Journal of the American Ceramic Society,2011,94(11):3702-3705. |
[45] | GUO Weiming, ZENG Lingyong, SU Guokang,et al.Synthesis of TaB2 powders by borothermal reduction[J].Journal of the American Ceramic Society,2017,100(6):2368-2372. |
[46] | WEI Tingting, LIU Zetan, REN Donglou,et al.Low temperature synthesis of TaB2 nanorods by molten-salt assisted borothermal reduction[J].Journal of the American Ceramic Society,2018,101(1):45-49. |
[47] | GUO Weiming, YANG Zhenguo, ZHANG Guojun.Synthesis of submicrometer HfB2 powder and its densification[J].Materials Letters,2012,83:52-55. |
[48] | RAN Songlin, SUN Huifeng, WEI Yanan,et al.Low-temperature synthesis of nanocrystalline NbB2 powders by borothermal reduction in molten salt[J].Journal of the American Ceramic Society,2014,97(11):3384-3387. |
[49] | LIU Zetan, WEI Ya’nan, MENG Xin,et al.Synthesis of CrB2 powders at 800 ℃ under ambient pressure[J].Ceramics International,2017,43(1):1628-1631. |
[50] | LIU Qiuyu, SUN Shikuan, ZENG Lingyong,et al.Improvement of sinterability and mechanical properties of ZrB2 ceramics by the modified borothermal reduction methods[J].Journal of the European Ceramic Society,2020,40(12):3844-3850. |
[51] | LIU Da, LIU Honghua, NING Shanshan,et al.Chrysanthemum-like high-entropy diboride nanoflowers:A new class of high-entropy nanomaterials[J].Journal of Advanced Ceramics,2020,9(3):339-348. |
[52] | LIU Da, CHU Yanhui, YE Beilin,et al.Spontaneous growth of hexagonal ZrB2 nanoplates driven by a screw dislocation mechanism[J].CrystEngComm,2018,20(47):7637-7641. |
[53] | WU Yuedong, ZHANG Guohua, WANG Yu,et al.Low-temperature synthesis of VB2 nanopowders by a molten-salt-assisted borothermal reduction process[J].Metallurgical and Materials Transactions B,2019,50(4):1696-1703. |
[54] | RICCERI R, MATTEAZZI P.A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis[J].Materials Science and Engineering:A,2004,379(1/2):341-346. |
[55] | WELHAM N J.Formation of nanometric TiB2 from TiO2 [J].Journal of the American Ceramic Society,2000,83(5):1290-1292. |
[56] | BAO Ke, Massey J, HUANG Juntong,et al.Low-temperature synthesis of hafnium diboride powder Via magnesiothermic reduction in molten salt [J].Proceedings of the 41st International Conference on Advanced Ceramics and Composites.2018,38(3):117-130. |
[57] | BAO Ke, WEN Yan, KHANGKHAMANO M,et al.Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt[J].Journal of the American Ceramic Society,2017,100(5):2266-2272. |
[58] | ZHANG Shaowei, KHANGKHAMANO M, ZHANG Haijun,et al.Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction[J].Journal of the American Ceramic Society,2014,97(6):1686-1688. |
[59] | ABEYSINGHE J P, KÖLLN A F, GILLAN E G.Rapid and energetic solid-state metathesis reactions for iron,cobalt,and nickel boride formation and their investigation as bifunctional water splitting electrocatalysts[J].ACS Materials Au,2022,2(4):489-504. |
[60] | LICHERI R, MUSA C, ORRÙ R,et al.Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering[J].Journal of Alloys and Compounds,2016,663:351-359. |
[61] | ÇAMURLU H E, MAGLIA F.Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis[J].Journal of the European Ceramic Society,2009,29(8):1501-1506. |
[62] | CORDOVA S, SHAFIROVICH E.Toward a better conversion in magnesiothermic SHS of zirconium diboride[J].Journal of Materials Science,2018,53(19):13600-13616. |
[63] | JALALY M, GOTOR F J.A new combustion route for synthesis of TaB2 nanoparticles[J].Ceramics International,2018,44(1):1142-1146. |
[64] | NASIRI-TABRIZI B, ADHAMI T, EBRAHIMI-KAHRIZSANGI R.Effect of processing parameters on the formation of TiB2 nanopowder by mechanically induced self-sustaining reaction[J].Ceramics International,2014,40(5):7345-7354. |
[65] | MILLET P, HWANG T.Preparation of TiB2 and ZrB2 influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia[J].Journal of Materials Science,1996,31(2):351-355. |
[66] | BOULOS M I, FAUCHAIS P, PFENDER E.Thermal plasmas:fundamentals and applications[M].New York:Plenum Press,1994:37. |
[67] | 张达.碳纳米材料的直流电弧法制备及其电催化性能研究[D].昆明:昆明理工大学,2021. |
ZHANG Da.Preparation of carbon nano-materials by DC arc method and its electrocatalytic properties[D].Kunming:Kunming University of Science and Technology,2021. | |
[68] | DE ARAÚJO L N M, SOUSA B S, DE ARAÚJO A G F,et al.ZnWO4 nanocrystals prepared by thermal plasma processing[J].Journal of Materials Science,2023,58(16):6944-6971. |
[69] | XIE Zhipeng, TANG Zhenggang, ZHANG Da,et al.Hydrogen arc plasma promotes the purification and nanoparticle preparation of tungsten[J].International Journal of Refractory Metals and Hard Materials,2022,105:105815. |
[70] | ZHANG Da, YE Kai, YAO Yaochun,et al.Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber[J].Carbon,2019,142:278-284. |
[71] | 叶凯,梁风,姚耀春,等.纳米镍粉的制备与应用的发展趋势[J].化工进展,2019,38(5):2252-2261. |
YE Kai, LIANG Feng, YAO Yaochun,et al.Development trend of preparation and application of nickel nanopowder[J].Chemical Industry and Engineering Progress,2019,38(5):2252-2261. | |
[72] | 张达,戴永年,梁风.电弧法制备石墨烯:工艺参数,生长机理,存在的问题与对策[J].材料导报,2017,31(9):64-71. |
ZHANG Da, DAI Yongnian, LIANG Feng.Preparation of graphene by arc discharge method:Process conditions,growth mechanisms,inadequacies and countermeasures[J].Materials Review,2017,31(9):64-71. | |
[73] | ZHOU Bing, WANG Yiming, LIU Zhubo,et al.Effect of modulation ratio on microstructure and tribological properties of TiAlN/TiAlCN multilayer coatings prepared by multi-excitation source plasma[J].Vacuum,2023,211:111917. |
[74] | HOU Shengping, XIE Zhipeng, ZHANG Da,et al.High-purity graphene and carbon nanohorns prepared by base-acid treated waste tires carbon via direct current arc plasma[J].Environmental Research,2023,238:117071. |
[75] | TANG Zhenggang, HOU Minjie, HE Xin,et al.Integrated purification of gadolinium and preparation of Gd2O3 nanoparticles by DC arc plasma[J].Journal of Rare Earths,2021,39(12):1574-1578. |
[76] | 张达,叶凯,唐政刚,等.等离子体冶金的现状与发展[J].中国有色金属学报,2021,31(7):1907-1921. |
ZHANG Da, YE Kai, TANG Zhenggang,et al.Development and status of plasma metallurgy[J].The Chinese Journal of Nonferrous Metals,2021,31(7):1907-1921. | |
[77] | CHENG Yingying, SHIGETA M, CHOI S,et al.Formation mechanism of titanium boride nanoparticles by RF induction thermal plasma[J].Chemical Engineering Journal,2012,183:483-491. |
[78] | CHOI S, MATSUO J, CHENG Yingying,et al.Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma[J].Journal of Nanoparticle Research,2013,15(8):1820. |
[79] | OH J H, KIM M, LEE Y H,et al.Synthesis of cobalt boride nanoparticles and h-BN nanocage encapsulation by thermal plasma[J].Ceramics International,2020,46(18):28792-28799. |
[80] | OH J H, GWON S H, KIM T H,et al.Synthesis of titanium boride nanoparticles and fabrication of flexible material for radiation shielding[J].Current Applied Physics,2021,31:151-157. |
[81] | CHENG Yingying, WATANABE T.Synthesis of titanium boride nanoparticles by induction thermal plasmas[J].Journal of Chemical Engineering of Japan,2011,44(8):583-589. |
[82] | CHOI S, MATSUO J, WATANABE T.Synthesis of AlB12 and YB66 nanoparticles by RF thermal plasmas[J].Journal of Physics:Conference Series,2013,441:012030. |
[83] | CHENG Yingying, CHOI S, WATANABE T.Synthesis of niobium boride nanoparticle by RF thermal plasma[J].Journal of Physics:Conference Series,2013,441:012031. |
[84] | CHENG Yingying, CHOI S, WATANABE T.Effect of nucleation temperature and heat transfer on synthesis of Ti and Fe boride nanoparticles in RF thermal plasmas[J].Powder Technology,2013,246:210-217. |
[85] | CHOI S, LAPITAN L D S, CHENG Yingying,et al.Synthesis of cobalt boride nanoparticles using RF thermal plasma[J].Advanced Powder Technology,2014,25(1):365-371. |
[86] | 黄庆红.新型电子材料在军事装备中的应用前景[C]//中国电子学会第十六届电子元件学术年会论文集.昆山,2010:71-80. |
[87] | 梁晓宇,李海涛,翟蕾,等.高温超导带材制备工艺的发展现状[J].低温与超导,2019,47(8):1-9. |
LIANG Xiaoyu, LI Haitao, ZHAI Lei,et al.The present situation of the preparation process for high-temperature superconducting tapes[J].Cryogenics & Superconductivity,2019,47(8):1-9. | |
[88] | LIANG Hao, PATEL D, SHAHBAZI M,et al.Recent progress in MgB2 superconducting joint technology[J].Journal of Magnesium and Alloys,2023,11(7):2217-2229. |
[89] | CHOI H J, ROUNDY D, SUN Hong,et al.The origin of the anomalous superconducting properties of MgB2 [J].Nature,2002,418(6899):758-760. |
[90] | KUMAKURA H.Development of high performance MgB2 tapes and wires[J].Journal of the Physical Society of Japan,2012,81(1):011010. |
[91] | 闫果,王庆阳,刘国庆,等.二硼化镁超导线带材及磁体应用研究进展[J].中国材料进展,2013,32(9):550-561. |
YAN Guo, WANG Qingyang, LIU Guoqing,et al.Research progress of MgB2 superconducting wires and tapes and superconducting magnet application[J].Materials China,2013,32(9):550- 561. | |
[92] | PATEL D, MATSUMOTO A, KUMAKURA H,et al.Superconducting joining concept for internal magnesium diffusion-processed magnesium diboride wires[J].ACS Applied Materials & Interfaces,2021,13(2):3349-3357. |
[93] | MA Qingshuang, PENG Junming, MA Zongqing,et al.Improved grain connectivity and critical current density in ex-situ MgB2 superconductors prepared by two-step sintering[J].Materials Chemistry and Physics,2018,204:62-66. |
[94] | DADIEL J L, NAIK S P K, PĘCZKOWSKI P,et al.Synthesis of dense MgB2 superconductor via in situ and ex situ spark plasma sintering method[J].Materials,2021,14(23):7395. |
[95] | MATTHEWS G B, MOUSAVI T, SANTRA S,et al.Improving the connectivity of MgB2 bulk superconductors by a novel liquid phase sintering process[J].Superconductor Science and Technology,2022,35(6):065005. |
[96] | NI Dewei, CHENG Yuan, ZHANG Jiaping,et al.Advances in ultra-high temperature ceramics,composites,and coatings[J].Journal of Advanced Ceramics,2022,11(1):1-56. |
[97] | WYATT B C, NEMANI S K, HILMAS G E,et al.Ultra-high temperature ceramics for extreme environments[J].Nature Reviews Materials,2023. |
[98] | ZHOU Yanchun, XIANG Huimin, FENG Zhihai,et al.General trends in electronic structure,stability,chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM=transition metal)[J].Journal of Materials Science & Technology,2015,31(3):285-294. |
[99] | NEELAKANTA B P S.Handbook of electromagnetic materials:Monolithic and composite versions and their applications[M].Boca Raton,Fla.:CRC Press,1995. |
[100] | ZHU Lili, WU Wenwen, CHEN Jingjing,et al.High-performance electromagnetic wave absorption by two-dimensional mesoporous monolayer Ti3C2T x MXene[J].Chemical Engineering Journal,2024,488:150649. |
[101] | ZHANG Weidong, ZHANG Xue, ZHU Qing,et al.High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber[J].Journal of Colloid and Interface Science,2021,586:457-468. |
[102] | JIAN Xian, TIAN Wei, LI Jinyao,et al.High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption[J].ACS Applied Materials & Interfaces,2019,11(17):15869-15880. |
[103] | ZHANG Haiming, ZHAO Biao, DAI Fuzhi,et al.(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B:A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band[J].Journal of Materials Science & Technology,2021,77:58-65. |
[104] | GONG Yubo, YANG Zhigang, WEI Xuguang,et al.Synthesis and electromagnetic wave absorbing properties of high-entropy metal diboride-silicon carbide composite powders[J].Journal of Materials Science,2022,57(20):9218-9230. |
[105] | ZHANG Weiming, DAI Fuzhi, XIANG Huimin,et al.Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides(HE TMB2)[J].Journal of Advanced Ceramics,2021,10(6):1299-1316. |
[106] | ZHANG Weiming, ZHAO Biao, XIANG Huimin,et al.One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides(HE REB6) and high entropy rare earth hexaborides/borates(HE REB6/HE REBO3) composite powders[J].Journal of Advanced Ceramics,2021,10(1):62-77. |
[107] | ZHANG Weiming, ZHAO Biao, NI Na,et al.High entropy rare earth hexaborides/tetraborides(HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J].Journal of Materials Science & Technology,2021,87:155-166. |
[108] | MENG Jiawei, FANG Huiyi, WANG Hongyu,et al.Effects of refractory metal additives on diboride-based ultra-high temperature ceramics:A review[J].International Journal of Applied Ceramic Technology,2023,20(3):1350-1370. |
[109] | GUO Wenjian, WANG Lingyu, ZHU Li’an,et al.Exploration of high-temperature oxidation resistance laws in ultra-high temperature boride ceramics through data-driven approaches[J].Corrosion Science,2024,230:111943. |
[110] | REZAIE A, FAHRENHOLTZ W G, HILMAS G E.Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1 500 ℃[J].Journal of the European Ceramic Society,2007,27(6):2495-2501. |
[111] | GOLLA B R, THIMMAPPA S K.Comparative study on microstructure and oxidation behaviour of ZrB2-20% SiC ceramics reinforced with Si3N4/Ta additives[J].Journal of Alloys and Compounds,2019,797:92-100. |
[112] | JIN Xiaochao, LI Pan, HOU Cheng,et al.Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress[J].Ceramics International,2019,45(6):7278-7285. |
[113] | CHEN Bowen, NI Dewei, BAO Weichao,et al.Engineering Cf/ZrB2-SiC-Y2O3 for thermal structures of hypersonic vehicles with excellent long-term ultrahigh temperature ablation resistance[J].Advanced Science,2023,10(34):e2304254. |
[114] | KIM M, OH J H, KIM T H,et al.Synthesis of metal boride nanoparticles using triple thermal plasma jet system[J].Journal of Nanoscience and Nanotechnology,2019,19(10):6264-6270. |
[1] | 张理元,沈如倩,阳金菊,李燕,税亿,苏敏. 锂离子筛研究进展[J]. 无机盐工业, 2022, 54(5): 28-37. |
[2] | 董家丽, 王露浔, 李 剑, 杨丽娜, 徐 龙, 孙宇萌. 双介孔二氧化硅制备研究进展[J]. 无机盐工业, 2014, 46(6): 17-. |
[3] | 张建刚, 黄春银, 黄海英, 刘少印, 程化鹏, 麻 晖. 太阳能级多晶硅制备进展[J]. 无机盐工业, 2013, 45(12): 6-. |
[4] | 韩东战, 尹中林, 王建立 . 高纯氧化铝制备技术及应用研究进展[J]. 无机盐工业, 2012, 44(9): 1-. |
[5] | 徐金尧, 明大增, 李志祥, 何宏亮. 氟化镁的制备方法[J]. 无机盐工业, 2011, 43(9): 8-. |
[6] | 彭爱国, 贺周初, 肖伟, 丁雄磊, 庄新娟. 化学二氧化锰研究进展[J]. 无机盐工业, 2011, 43(3): 8-. |
[7] | 李素英;钱海燕. 白炭黑的制备与应用现状[J]. 无机盐工业, 2008, 0(1): 0-0. |
[8] | 毛金龙;郭胜惠;彭金辉;张利波;张世敏;陈 菓. 二氧化锆的相稳定及其制备方法[J]. 无机盐工业, 2008, 0(1): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|