无机盐工业 ›› 2024, Vol. 56 ›› Issue (3): 19-27.doi: 10.19964/j.issn.1006-4990.2023-0374
收稿日期:
2023-07-14
出版日期:
2024-03-10
发布日期:
2024-03-14
通讯作者:
王重庆(1971— ),男,博士,副教授,主要研究方向为吸附分离材料、吸附分离过程研究;E-mail:cqw@njtech.edu.cn。作者简介:
汪敏娟(1980— ),女,硕士,中级,主要研究方向为科技情报管理研究;E-mail:wangminjuan@njtech.edu.cn。
WANG Minjuan(), WANG Chongqing()
Received:
2023-07-14
Published:
2024-03-10
Online:
2024-03-14
摘要:
总结了应用于液相的高速旋转式反应器、微通道反应器和应用于气相的气相流动反应器,阐述了旋转盘式反应器、旋转填充床反应器、高剪切搅拌反应器和管套管旋转环隙反应器4种高速旋转式反应器和液滴型微通道反应器及激光气化流动反应器、气溶胶反应器和连续流非热等离子体反应器3种连续气相反应器的设计原理、流场分布及在氧化物、核壳结构等诸多无机纳米颗粒及金属纳米棒等制备中的研究现状并分析了其优缺点。这些反应器均能制备粒径更为均一、结构独特的纳米颗粒;但在设备加工工艺、通道堵塞和放大等方面面临挑战。后续需充分利用其各自的特点开发出新的纳米材料和进行反应器放大规律研究,还要开发新型反应器来满足科技对纳米材料的要求。
中图分类号:
汪敏娟, 王重庆. 新型反应器在纳米颗粒制备中的应用研究进展[J]. 无机盐工业, 2024, 56(3): 19-27.
WANG Minjuan, WANG Chongqing. Review on application of new types of chemical reactors in preparation of nanoparticles[J]. Inorganic Chemicals Industry, 2024, 56(3): 19-27.
1 | HAKKE V, SONAWANE S, ANANDAN S,et al.Process intensification approach using microreactors for synthesizing nanomateri-als:A critical review[J].Nanomaterials,2021,11(1):11010098. |
2 | FASSI B, DRIZ S, AL-DOURI Y,et al.Optical investigations of Cu2CdSnS4 quaternary alloy nanostructure for indoor optical wireless communications[J].Optics Communications,2022,517:128351. |
3 | WU Shihao, LI Gang, LIU Wenxia,et al.Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators[J].Nano Energy,2022,93:106859. |
4 | ZHANG Jialu, SHEN Cheng, DIAO Guangfen.Application and microstructure properties of nanomaterials in new concrete materi-als[J].Journal of Nanomaterials,2022,2022:1-10. |
5 | WAZALWAR R, SAHU M, RAICHUR A M.Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers:Current status and road to industrialization[J].Nanoscale Advances,2021,3(10):2741-2776. |
6 | ZHANG Yinfeng, WANG Tingting, SUN Meng,et al.Advanced nanomedicine:Redefining therapeutic paradigms for inflammatory bowel disease[J].Advanced Healthcare Materials,2023,12(19):2300069. |
7 | ISLAM M H, AFROJ S, UDDIN M A,et al.Graphene and CNT-based smart fiber-reinforced composites:A review[J].Advanced Functional Materials,2022,32(40):2205723. |
8 | CHEN Xiaoyu, WANG Zumin, WEI Yanze,et al.High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined templa-te[J].Angewandte Chemie International Edition,2019,58(49):17621-17624. |
9 | CAI Yahui, MA Shuyi, YANG Tingting,et al.Preparation of YVO4 octahedral nanomaterials and gas-sensing characteristics to triethylamine[J].Journal of Alloys and Compounds,2022,897:163167. |
10 | PU Houkang, ZHANG Te, DONG Kaiyu,et al.Evolution of PtCu tripod nanocrystals to dendritic triangular nanocrystals and study of the electrochemical performance to alcohol electrooxidation[J].Nanoscale,2021,13(48):20592-20600. |
11 | PHAM V H, QUAN D H, MANH N T,et al.Microstructure and luminescence of VO2(B) nanoparticle synthesis by hydrothermal method[J].Green Processing and Synthesis,2019,8(1):802- 807. |
12 | POLYAKOV M N, SCHOEPPNER R L, PETHÖ L,et al.Direct co-deposition of mono-sized nanoparticles during sputtering[J].Scripta Materialia,2020,186:387-391. |
13 | SINGH M, PANDEY A, SINGH S,et al.Iron nanoparticles decorated hierarchical carbon fiber forest for the magnetic solid-phase extraction of multi-pesticide residues from water samples[J].Chemosphere,2021,282:131058. |
14 | ISHII K, KAWAYAMA K, FUMOTO K.Synthesis and evaluation of high thermal conductivity magnetic heat storage inorganic microcapsules simultaneously containing gallium and magnetic nanoparticles by sol-gel method[J].Journal of Energy Storage,2023,59:106426. |
15 | MORÁN D, GUTIÉRREZ G, MENDOZA R,et al.Synthesis of controlled-size starch nanoparticles and superparamagnetic st-arch nanocomposites by microemulsion method[J].Carbohydrate Polymers,2023,299:120223. |
16 | DANG Lehang, VU M T, CHEN Jun,et al.Effect of ultrasonication on self-assembled nanostructures formed by amphiphilic positive-charged copolymers and negative-charged drug[J].ACS Omega,2019,4(3):4540-4552. |
17 | MAASS D, VALÉRIO A, LOURENÇO L A,et al.Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor[J].Hydrometallurgy,2019,184:199-205. |
18 | JIANG Pengfei, KIM W S, YU T.Effective dispersion of CuPd alloy nanoparticles using the Taylor vortex flow for the preparation of catalysts with relatively clean surfaces[J].ACS Applied Nano Materials,2022,5(7):9604-9614. |
19 | CHEN Bingda, QIN Feifei, SU Meng,et al.One droplet reaction for synthesis of multi-sized nanoparticles[J].Nano Research,2023,16(4):5850-5856. |
20 | LARREA A, EGUIZABAL A, SEBASTIÁN V.Gas-directed production of noble metal-magnetic heteronanostructures in continuous fashion:Application in catalysis[J].ACS Applied Materials & Interfaces,2019,11(46):43520-43532. |
21 | FAN Wenting, ZHAO Fang, CHEN Ming,et al.An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles[J].Chinese Journal of Chemical Engineering,2023. Doi:10.1016/j.cjche.2022.12.008 . |
22 | SAIKIA A, NEWAR R,DAS S,et al.Scopes and challenges of microfluidic technology for nanoparticle synthesis,photocatalysis and sensor applications:A comprehensive review[J].Chemical Engineering Research and Design,2023,193:516-539. |
23 | JU Ting, ZHANG Zhiliang, LI Yang,et al.Continuous production of lignin nanoparticles using a microchannel reactor and its application in UV-shielding films[J].RSC Advances,2019,9(43):24915-24921. |
24 | CHAUDHURI A, TEMELLI E B, HOP C J W,et al.Transesterification of triglycerides in a rotor-stator spinning disc reactor:Scale-up and solid handling[J].Industrial & Engineering Chemistry Research,2022,61(20):6831-6844. |
25 | LIN C C, ZHONG Yuhong.Degradation of Orange G in water by nano-Cu0/H2O2 process with nano-Cu0 synthesized in a rotating packed bed with blade packings[J].Materials Chemistry and Physics,2023,295:127097. |
26 | SUDA A, KUMATANI N, SATO K,et al.Continuous fabrication of monodisperse ceria-zirconia-yttria composite oxide nanoparticles using a novel high-shear agitation reactor[J].ACS Omega,2018,3(6):6560-6565. |
27 | HOSOYA M, MANAKA A, NISHIJIMA S,et al.Development of a liquid-liquid biphasic reaction using a Taylor vortex flow reactor[J].Asian Journal of Organic Chemistry,2021,10(6):1414-1418. |
28 | CHEN Bo, SUN Qian, WANG Dan,et al.High-gravity-assisted synthesis of surfactant-free transparent dispersions of monodispersed MgAl-LDH nanoparticles[J].Industrial & Engineering Chemistry Research,2020,59(7):2960-2967. |
29 | JAHANSHAHI-ANBOOHI J, MOLAEI DEHKORDI A.Continuous synthesis of barium sulfate nanoparticles in a new high-speed spinning disk reactor[J].Industrial & Engineering Chemistry Research,2019,58(36):16597-16609. |
30 | TANG Zengmin, KIM W S, YU T.Studies on morphology changes of copper sulfide nanoparticles in a continuous Couette-Taylor reactor[J].Chemical Engineering Journal,2019,359:1436-1441. |
31 | RAN Jianfeng, WANG Xuxu, LIU Yuanhong,et al.Microreactor-based micro/nanomaterials:Fabrication,advances,and outlook[J].Materials Horizons,2023,10(7):2343-2372. |
32 | SUI Jinsong, YAN Junyu, LIU Di,et al.Continuous synthesis of nanocrystals via flow chemistry technology[J].Small,2021,17(33):e2104166. |
33 | PERIYASAMY M, SAHA A, SAIN S,et al.A comparative structural and photocatalytic study on SnO2 nanoparticles fabricated in batch reactor and microreactor[J].Journal of Environmental Chemical Engineering,2020,8(6):104604. |
34 | ARSENJUK L, VON VIETINGHOFF N, GLADIUS A W,et al.Actively homogenizing fluid distribution and slug length of liquid-liquid segmented flow in parallelized microchannels[J].Chemical Engineering and Processing-Process Intensification,2020,156:108061. |
35 | DU Le, WANG Yujun, WANG Kai,et al.Growth of aragonite CaCO3 whiskers in a microreactor with calcium dodecyl benzenesulfonate as a control agent[J].Industrial & Engineering Chemistry Research,2015,54(28):7131-7140. |
36 | SU Y F, KIM H, KOVENKLIOGLU S,et al.Continuous nanoparticle production by microfluidic-based emulsion,mixing and crystallization[J].Journal of Solid State Chemistry,2007,180(9):2625-2629. |
37 | 叶飞飞,张宝丹,靳海波,等.微通道反应器合成纳米BaSO4颗粒及其在干片多功能层上的应用[J].化工学报,2019,70(3):1179-1187. |
YE Feifei, ZHANG Baodan, JIN Haibo,et al.Preparation of BaSO4 nanoparticles in microchannel reactor and its application in multifunctional layers of medical slices[J].CIESC Journal,2019,70(3):1179-1187. | |
38 | SINGH A, BARUAH A, KATOCH V,et al.Continuous flow synthesis of Ag3PO4 nanoparticles with greater photostability and photocatalytic dye degradation efficiency[J].Journal of Photochemistry and Photobiology A:Chemistry,2018,364:382-389. |
39 | CAMPBELL Z S, PARKER M, BENNETT J A,et al.Continuous synthesis of monodisperse yolk-shell titania microspheres[J].Chemistry of Materials,2018,30(24):8948-8958. |
40 | STRAß A, MAIER R, GÜTTEL R.Continuous synthesis of nanostructured Co3O4@SiO2 core-shell particles in a laminar-flow reactor[J].Chemie Ingenieur Technik,2017,89(7):963-967. |
41 | CHITHAIAH P, GHOSH S, IDELEVICH A,et al.Solving the “MoS2 nanotubes” synthetic enigma and elucidating the route for their catalyst-free and scalable production[J].ACS Nano,2020,14(3):3004-3016. |
42 | HUANG Yuanlong, COGGON M M, ZHAO Ran,et al.The caltech photooxidation flow tube reactor:Design,fluid dynamics and characterization[J].Atmospheric Measurement Techniques,2017,10(3):839-867. |
43 | KUWATA M, MARTIN S T.Particle size distributions following condensational growth in continuous flow aerosol reactors as derived from residence time distributions:Theoretical development and application to secondary organic aerosol[J].Aerosol Science and Technology,2012,46(8):937-949. |
44 | WOODARD A, XU Lihua, BARRAGAN A A,et al.On the non-thermal plasma synthesis of nickel nanoparticles[J].Plasma Processes and Polymers,2018,15(1):1700104. |
45 | WOODARD M P, DUNCAN M A.Laser synthesis and spectroscopy of molybdenum oxide nanorods[J].The Journal of Physical Chemistry C,2019,123(14):9560-9566. |
46 | HOU Ruozhou, MAHMUD T, PRODROMIDIS N,et al.Synthesis of UO2F2 nanoparticles in a tubular aerosol reactor:Reactor design and experimental investigations[J].Industrial & Engineering Chemistry Research,2007,46(7):2020-2033. |
[1] | 杨卓, 李春雷, 张鑫, 乔勉, 田玉琴, 宫源. 纳米氧化锌液相法制备技术进展[J]. 无机盐工业, 2024, 56(3): 1-11. |
[2] | 武鲁明, 于海斌, 王亚权. 多孔碳基非贵金属氧还原电催化剂研究进展[J]. 无机盐工业, 2023, 55(10): 13-23. |
[3] | 徐恩浩, 武开鹏. 纳米氧化铬的制备与应用研究进展[J]. 无机盐工业, 2023, 55(10): 24-34. |
[4] | 党莹. 纳米颗粒粉煤灰绿色混凝土的耐久性试验研究[J]. 无机盐工业, 2021, 53(7): 96-100. |
[5] | 陈心怡,黄云龙,袁爱群,黄增尉,韦冬萍,马少妹. 纳米磷酸锌的可控合成[J]. 无机盐工业, 2019, 51(8): 20-24. |
[6] | 付 新. 水热合成二氧化钛纳米颗粒及光致发光性能研究[J]. 无机盐工业, 2019, 51(10): 32-35. |
[7] | 马 宇, 颉信忠, 赵艺伟, 李建功. 引入高温炭隔离相高分子网络法 制备单分散α-氧化铝纳米颗粒[J]. 无机盐工业, 2013, 45(9): 28-. |
[8] | 宋续明, 毛志强, 赵亚平. 超临界水快速连续制备纳米磷酸铁锂正极材料[J]. 无机盐工业, 2012, 44(9): 59-. |
[9] | 王红涛, 张乐观, 贺茂云. 纳米氧化镍制备及表征[J]. 无机盐工业, 2012, 44(3): 60-. |
[10] | 陈庆春, 吴庆生, 邓慧宇. 针状氧化锌晶须的银纳米颗粒修饰及其表征[J]. 无机盐工业, 2011, 43(9): 17-. |
[11] | 许小荣;李建芬;肖波;余波. 均匀沉淀法制备纳米氧化铁及工艺优化[J]. 无机盐工业, 2009, 0(6): 0-0. |
[12] | 李成魁;杜春风;严彪. 磁性铁氧化物纳米颗粒的性能与应用进展[J]. 无机盐工业, 2009, 0(11): 0-0. |
[13] | 郑举功;陈泉水;杨婷. 磁性四氧化三铁纳米粒子的合成及表征[J]. 无机盐工业, 2008, 0(11): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|