无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2025, Vol. 57 ›› Issue (7): 73-79.doi: 10.19964/j.issn.1006-4990.2024-0371

• 研究与开发 • 上一篇    下一篇

汽车电池负极用储氢合金的相结构与性能研究

陈成春1(), 李云琴2, 赵美琴3   

  1. 1.福建船政交通职业学院,福建 福州 350007
    2.福州大学,福建 福州 350108
    3.厦门大学,福建 厦门 361005
  • 收稿日期:2024-07-01 出版日期:2025-07-10 发布日期:2025-07-22
  • 作者简介:陈成春(1973— ),硕士,副教授,研究方向为汽车电池材料等;E-mail:1330501179@139.com
  • 基金资助:
    福建省科技厅自然科学基金面上项目(2021J01337)

Study on phase structure and properties of hydrogen storage alloy for automotive battery anode

CHEN Chengchun1(), LI Yunqin2, ZHAO Meiqin3   

  1. 1. Fujian Chuanzheng Communications College,Fuzhou 350007,China
    2. Fuzhou University,Fuzhou 350108,China
    3. Xiamen University,Xiamen 361005,China
  • Received:2024-07-01 Published:2025-07-10 Online:2025-07-22

摘要:

为了提升汽车电池负极用RENi3.2Mn0.2Al0.15储氢合金(RE为复合稀土Y1-x La x )的电化学性能,采用真空电弧熔炼法制备RENi3.2Mn0.2Al0.15储氢合金,考察了稀土Y1-x La x 复合添加及x值对储氢合金相结构、显微形貌和电化学性能的影响。结果表明,RENi3.2Mn0.2Al0.15储氢合金在x=0、0.15时由LaNi5+Ce2Ni7型相组成,在x=0.25、0.33和0.50时由Ce5Co19+Ce2Ni7型相组成,在x=0.75和1.00时由PuNi3+LaNi5+Ce2Ni7型相组成。不同类型的物相在扫描电镜下呈现不同的衍射衬度,扫描电镜显微形貌观察结果与X射线衍射谱图测试结果保持一致。x=0~1.00时储氢合金的活化次数介于2~4次;随着x从0增加至1.00,储氢合金中Ce2Ni7型相丰度、放电容量和循环100次时的容量保持率(S100)先增大后减小,在x=0.33时取得Ce2Ni7型相丰度最大值(93.07%)、放电容量最大值(372.6 mA·h/g)和S100最大值(89.01%),储氢合金的放电容量变化趋势与Ce2Ni7型相丰度变化趋势相同。储氢合金电极的腐蚀电流密度(i)与S100负相关,表明储氢合金的耐腐蚀性能是影响循环性能的主要因素;储氢合金的氢扩散系数(D0)与高倍率放电性能(HRD900)正相关,表明储氢合金的高倍率放电性能由氢的扩散速率决定。

关键词: 电池负极, RENi3.2Mn0.2Al0.15, 储氢合金, 相结构, 电化学性能

Abstract:

In order to improve the electrochemical performance of RENi3.2Mn0.2Al0.15 hydrogen storage alloy(RE is a composite rare earth Y1-x La x ) for automotive battery anodes,RENi3.2Mn0.2Al0.15 hydrogen storage alloy was prepared by vacuum arc melting method,the effects of rare earth Y1-x La x composite addition and x value on the phase structure,morphology and electrochemical performance of the hydrogen storage alloy were investigated.The results indicated that when x=0 and 0.15,the hydrogen storage alloy was mainly composed of LaNi5 and Ce2Ni7 phases.When x=0.25,0.33,and 0.50,the hydrogen storage alloy was mainly composed of Ce5Co19 type and Ce2Ni7 type phases.When x=0.75 and 1.00,hydrogen storage alloys were mainly composed of PuNi3 type,LaNi5 type,and Ce2Ni7 type phases.Different types of phases exhibited different diffraction contrast under scanning electron microscopy,and the microscopic morphology observed by scanning electron microscopy was consistent with the X-ray diffraction pattern test results.When x=0~1.00,the activation frequency of hydrogen storage alloys was ranged from 2 to 4 times.As x was increased from 0 to 1.00,the abundance of Ce2Ni7 phase,discharge capacity,and capacity retention rate at 100 cycles(S100) in the hydrogen storage alloy showed trend of firstly increased and then decreased.At x=0.33,the maximum abundance of Ce2Ni7 phase(93.07%),maximum discharge capacity(372.6 mA·h/g),and maximum S100 value(89.01%) were obtained.The trend of discharge capacity change in the hydrogen storage alloy was consistent with that of Ce2Ni7 phase abundance.The corrosion current density i of hydrogen storage alloy electrodes was negatively correlated with S100,indicating that the corrosion resistance of hydrogen storage alloys was the main factor affecting cycling performance.The hydrogen diffusion coefficient D0 of hydrogen storage alloys was positively correlated with HRD900,indicating that the high rate discharge performance of hydrogen storage alloys was determined by the diffusion rate of hydrogen.

Key words: battery anode, RENi3.2Mn0.2Al0.15, hydrogen storage alloy, phase structure, electrochemical performance

中图分类号: