无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2025, Vol. 57 ›› Issue (4): 45-51.doi: 10.19964/j.issn.1006-4990.2024-0251

• 研究与开发 • 上一篇    下一篇

Nd替代Y对汽车电池负极用储氢合金电化学性能的影响

曹生亮1(), 郑标帝1, 周曦2, 孟冉浩2   

  1. 1.济源职业技术学院,河南 济源 459000
    2.郑州大学,河南 郑州 450001
  • 收稿日期:2024-05-07 出版日期:2025-04-10 发布日期:2025-04-21
  • 作者简介:曹生亮(1987— ),研究生,讲师,研究方向为新能源汽车电池;E-mail:515462996@qq.com
  • 基金资助:
    河南省科技攻关计划项目(2102210237)

Effect of Nd replacing Y on electrochemical performance of hydrogen storage alloys for automotive battery anodes

CAO Shengliang1(), ZHENG Biaodi1, ZHOU Xi2, MENG Ranhao2   

  1. 1. Jiyuan vocational and technical college,Jiyuan 459000,China
    2. Zhengzhou University,Zhengzhou 450001,China
  • Received:2024-05-07 Published:2025-04-10 Online:2025-04-21

摘要:

通过A端Nd替代Y元素的方法制备了汽车电池负极用La0.15Y0.85-x Nd x Ni3.2Mn0.15Al0.15x=0~0.6)储氢合金,考察了不同Nd含量替代Y的储氢合金的相结构、微观形貌和电化学性能。结果表明:x=0~0.3时储氢合金主要由Ce2Ni7型和LaNi5型相组成,x≥0.4时,储氢合金主要由Ce2Ni7型和PuNi3型相组成;随着x从0增加至0.6,储氢合金的晶胞参数a和晶胞参数c逐渐增大、c/a逐渐减小。不同含量Nd替代Y后储氢合金电极都可以在2~3次活化后取得最大放电容量(Cmax),Cmax与储氢合金中Ce2Ni7型相丰度具有线性相关性,Ce2Ni7型相丰度越大则储氢合金的Cmax越大;随着x由0.2增加至0.6,储氢合金的S100先增大后减小,添加Nd元素的储氢合金的S100都高于未添加Nd元素的储氢合金,且x=0.4时储氢合金具有高S100的同时还具有较大放电容量,储氢合金电极的循环稳定性主要由其在碱液中的耐腐蚀性决定。相同放电电流密度下,x=0.4时储氢合金的高倍率放电性能最大;x=0和0.1时储氢合金电极的高倍率放电性能主要由氢扩散系数D0决定,x=0.2~0.6时储氢合金电极的高倍率放电性能主要由交换电流密度I0和氢扩散系数D0决定。

关键词: 元素替代, Nd, 储氢合金, 相组成, 显微形貌, 电化学性能

Abstract:

La0.15Y0.85-x Nd x Ni3.2Mn0.15Al0.15x=0~0.6) hydrogen storage alloy for automotive battery anode was prepared by replacing Y with A-end Nd element.The phase structure,microstructure,and electrochemical performance of hydrogen storage alloys with different Nd contents replacing Y were investigated.The results showed that when x=0~0.3,the hydrogen storage alloy was mainly composed of Ce2Ni7 and LaNi5 phases,when x≥0.4,the hydrogen storage alloy was mainly composed of Ce2Ni7 and PuNi3 phases.As the x value increased from 0 to 0.6,the cell parameters a and c of the hydrogen storage alloy gradually was increased,while c/a was gradually decreased.After replacing Y with different contents of Nd,hydrogen storage alloy electrodes could achieve maximum discharge capacity(Cmax) after 2~3 activations.Cmax had a linear correlation with the abundance of Ce2Ni7 type phases in the hydrogen storage alloy.The higher the abundance of Ce2Ni7 type phases,the greater the Cmax of the hydrogen storage alloy.As the x value increased from 0.2 to 0.6,the S100 of the hydrogen storage alloy was firstly increased and then decreased.The S100 of the hydrogen storage alloy with added Nd element was higher than that of the hydrogen storage alloy without Nd addition.Moreover,the x=0.4 hydrogen storage alloy had a high S100 and a large discharge capacity.The cycling stability of the hydrogen storage alloy electrode was mainly determined by its corrosion resistance in alkaline solution.At the same discharge current density,the high rate discharge performance of hydrogen storage alloys was highest at x=0.4.The high rate discharge performance of hydrogen storage alloy electrodes was mainly determined by the hydrogen diffusion coefficient D0 when x=0 and 0.1,and determined by the exchange current density I0 and hydrogen diffusion coefficient D0 when x=0.2~0.6.

Key words: element substitution, Nd, hydrogen storage alloys, phase composition, microscopic morphology, electrochemical performance

中图分类号: