[1] |
杨永钰, 高婷婷, 田朋, 等. 无机超细粉体改性锂离子电池隔膜的研究进展[J]. 无机盐工业, 2021, 53(6):49-58.
|
[2] |
孙新华, 侯雷, 秦凯. 锂离子电池电解质六氟磷酸锂市场分析[J]. 无机盐工业, 2021, 53(3):7-11.
|
[3] |
李卫, 田文怀, 其鲁. 锂离子电池正极材料技术研究进展[J]. 无机盐工业, 2015, 47(6):1-5.
|
[4] |
孙培亮, 孙新华, 陈世娟, 等. 锂离子动力电池用二氟磷酸锂的制备研究[J]. 无机盐工业, 2019, 51(1):39-42.
|
[5] |
LAGADEC M F, ZAHN R and WOOD V. Characterization and per-formance evaluation of lithium-ion battery separators[J]. Nature En-ergy, 2019, 4(1):16-25.
|
[6] |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy Envi-ronmental Science, 2011, 4(9):3243-3262.
|
[7] |
CHENG F, LIANG J, TAO Z, et al. Functional materials for rechar-geable batteries[J]. Advanced Materials, 2011, 23(15):1695-1715.
|
[8] |
RYOU M H, LEE Y M, PARK J K, et al. Mussel-inspired polydopa-mine-treated polyethylene separators for high-power Li-ion batte-ries[J]. Advanced Materials, 2011, 23(27):3066-3070.
|
[9] |
WANG L, DENG N, JU J, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable elec-trochemical performance[J]. Electrochimica Acta, 2019, 300:263-273.
|
[10] |
ZHAO H, KANG W, DENG N, et al. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery[J]. Chemical Engineering Jo-urnal, 2020, 384.Doi: 10.1016/j.cej.2019.123312.
|
[11] |
XU H, LI D, LIU Y, et al. Preparation of halloysite/polyvinylidene fluoride composite membrane by phase inversion method for lithi-um ion battery[J]. Journal of Alloys Compounds, 2019, 790:305-315.
|
[12] |
SHI X, SUN Q, BOATENG B, et al. A quasi-solid composite sepa-rator with high ductility for safe and high-performance lithium-ion batteries[J]. Journal of Power Sources, 2019, 414:225-232.
|
[13] |
ZHANG S, ERVIN M, XU K, et al. Microporous poly(acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable li-thium battery[J]. Electrochimica Acta, 2004, 49(20):3339-3345.
|
[14] |
l′ABEE R, DAROSA F, ARMSTRONG M J, et al. High tempera-ture stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility[J]. Journal of Power Sources, 2017, 345:202-211.
|
[15] |
ZHANG H, LIN C E, ZHOU M Y, et al. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries[J]. Ele-ctrochimica Acta, 2016, 187:125-133.
|
[16] |
ZHANG H, ZHANG Y, YAO Z, et al. Novel configuration of polyi-mide matrix-enhanced cross-linked gel separator for high perfor-mance lithium ion batteries[J]. Electrochimica Acta, 2016, 204:176-182.
|
[17] |
WANG Y, WANG S, FANG J, et al. A nano-silica modified polyi-mide nanofiber separator with enhanced thermal and wetting prop-erties for high safety lithium-ion batteries[J]. Journal of Membrane Science, 2017, 537:248-254.
|
[18] |
YAN X, WANG Y, YU T, et al. Polyimide binder by combining with polyimide separator for enhancing the electrochemical performance of lithium ion batteries[J]. Electrochimica Acta, 2016, 216:1-7.
|
[19] |
SMITH S A, WILLIAMS B P, JOO Y L. Effect of polymer and ceramic morphology on the material and electrochemical properties of electrospun PAN/polymer derived ceramic composite nanofiber membranes for lithium ion battery separators[J]. Journal of Mem-brane Science, 2017, 526:315-322.
|
[20] |
SHI J, HU H, XIA Y, et al. Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(24):9134-9141.
|
[21] |
CHUNG T S, SHAO L and TIN P S. Surface modification of polyi-mide membranes by diamines for H2 and CO2 separation[J]. Macro-molecular Rapid Communications, 2006, 27(13):998-1003.
|
[22] |
CHOI S H, JANSEN J C, TASSELLI F, et al. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membr-anes for H2/CO2 separation[J]. Separation Purification Technology, 2010, 76(2):132-139.
|
[23] |
AHMAD M Z, PELLETIER H, MARTIN-GIL V, et al. Chemical crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for improved CO2/CH4 separation[J]. Membranes, 2018, 8(3).Doi: 10.3390/mem-branes8030067.
|
[24] |
MANGINDAAN D W, WOON N M, SHI G M, et al. P84 polyimide membranes modified by a tripodal amine for enhanced pervapora-tion dehydration of acetone[J]. Chemical Engineering Science, 2015, 122:14-23.
|
[25] |
XU S, LIU L and WANG Y. Network cross-linking of polyimide membranes for pervaporation dehydration[J]. Separation Purifica-tion Technology, 2017, 185:215-226.
|
[26] |
戚律, 周元冲, 徐荣, 等. P84 共聚聚酰亚胺-聚乙烯吡咯烷酮/聚丙烯腈复合膜的制备及其渗透汽化分离甲醇/四氢呋喃[J]. 化工进展, 2019, 38(2):971-978.
|
[27] |
曹敏, 聚酰亚胺纳滤膜的交联改性及其用于润滑油溶剂回收研究[D]. 青岛:中国石油大学 (华东), 2013.
|
[28] |
张永玲, 乙二胺改性聚酰亚胺纳滤膜的制备和耐溶剂性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
|
[29] |
徐艳超, 新型聚酰亚胺基耐溶剂纳滤膜的构筑及其分离性能研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
|
[30] |
YURIAR-ARREDONDO K, ARMSTRONG M R, SHAN B, et al. Nanofiber-based Matrimid organogel membranes for battery separator[J]. Journal of Membrane Science, 2018, 546:158-164.
|