[1] |
Kim T, Song W T, Son D Y, et al. Lithium-ion batteries:Outlook on present,future,and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7):2942-2964.
doi: 10.1039/C8TA10513H
|
[2] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
doi: 10.1038/451652a
|
[3] |
Yoon C S, Ryu H H, Park G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-den-sity lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(9):4126-4132.
doi: 10.1039/C7TA11346C
|
[4] |
Whitfield P S, Davidson I J, Cranswick L M D, et al. Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction[J]. Solid State Ionics, 2005, 176(5/6):463-471.
doi: 10.1016/j.ssi.2004.07.066
|
[5] |
Zheng J, Kan W H, Manthiram A. Role of Mn content on the electro-chemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2(0.0≤x≤0.08) cathodes for lithium-ion batteries[J]. ACS Applied Mate-rials & Interfaces, 2015, 7(12),6926-6934.
|
[6] |
Sun H H, Choi W, Lee J K, et al. Control of electrochemical proper-ties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio[J]. Journal of Power Sources, 2015, 275:877-833.
doi: 10.1016/j.jpowsour.2014.11.075
|
[7] |
Gong J, Wang Q, Sun J. Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteri-es[J]. Thermochimica Acta, 2017, 655:176-180.
doi: 10.1016/j.tca.2017.06.022
|
[8] |
Xu J, Lin F, Doeff M M, et al. A review of Ni-based layered oxides for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(3):874-901.
doi: 10.1039/C6TA07991A
|
[9] |
Lee J, Urban A, Li X, et al. Unlocking the potential of cation-disor-dered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170):519-522.
doi: 10.1126/science.1246432
|
[10] |
Kim N Y, Yim T, Song J H, et al. Microstructural study on degrada-tion mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy[J]. Journal of Power Sources, 2016, 307:641-648.
doi: 10.1016/j.jpowsour.2016.01.023
|
[11] |
Kim J, Lee H, Cha H, et al. Nickel-rich cathodes:Prospect and re-ality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6).Doi: 10.1002/aenm.201870023.
|
[12] |
Lu J, Peng Q, Wang W, et al. Nanoscale coating of LiMO2(M=Ni,Co,Mn) nanobelts with Li+-conductive Li2TiO3:Toward better rate capabilities for Li-ion batteries[J]. Journal of the American Che-mical Society, 2013, 135(5):1649-1652.
|
[13] |
Cho D H, Jo C H, Cho W, et al. Effect of residual lithium compo-unds on layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of the Electro-chemical Society, 2014, 161(6):A920-A926.
doi: 10.1149/2.042406jes
|
[14] |
Dong S, Zhou Y, Hai C, et al. Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials[J]. Ceramics International, 2019, 45(1):144-152.
doi: 10.1016/j.ceramint.2018.09.145
|
[15] |
Wang J, Du C, Yan C, et al. Al2O3 coated concentration-gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries[J]. Electrochimica Acta, 2015, 174:1185-1191.
doi: 10.1016/j.electacta.2015.06.112
|
[16] |
Gan Z, Hu G, Peng Z, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB[J]. Applied Surface Science, 2019, 481:1228-1238.
doi: 10.1016/j.apsusc.2019.03.116
|
[17] |
Xiong X, Ding D, Wang Z, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole[J]. Journal of Solid State Electrochemistry, 2014, 18(9):2619-2624.
doi: 10.1007/s10008-014-2519-7
|
[18] |
Chen G, Peng B, Han R, et al. A robust carbon coating strategy to-ward Ni-rich lithium cathodes[J]. Ceramics International, 2020.Doi: 10.1016/j.ceramint.2020.05.160.
|
[19] |
Huang Y, Xia J, Hu G, et al. Conductive cyclized polyacrylonitrile coated LiNi0.6Co0.2Mn0.2O2 cathode with the enhanced electrochemi-cal performance for Li-ion batteries[J]. Electrochimica Acta, 2020, 332.Doi: 10.1016/j.electacta.2019.135505.
|
[20] |
Wang D, Li X, Wang W, et al. Improvement of high voltage electro-chemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials via Li2ZrO3 coating[J]. Ceramics International, 2015, 41(5):6663-6667.
doi: 10.1016/j.ceramint.2015.01.100
|
[21] |
Zou P, Lin Z, Fan M, et al. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery[J]. Applied Surface Science, 2020, 504.Doi: 10.1016/j.apsusc.2019.144506.
|
[22] |
Huang X, Zhu W, Yao J, et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating[J]. Journal of Materials Chemistry A, 2020, 8(34):17429-17441.
doi: 10.1039/D0TA00924E
|
[23] |
Qu X, Yu Z, Ruan D, et al. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(15):5819-5830.
|
[24] |
Zhao S Y, Zhu Y T, Qian Y C, et al. Annealing effects of TiO2 coat-ing on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery[J]. Materials Letters,2020,265(Apra15):Doi:10.1016/j.matlet. 2020. 127418.
|
[25] |
Li Q, Zhuang W, Li Z, et al. Realizing superior cycle stability of a Ni-rich layered LiNi0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification[J]. ChemElectroChem, 2020, 7(4):998-1006.
doi: 10.1002/celc.v7.4
|
[26] |
Zhao E Y, Chen M M, Hu Z B, et al. Improved cycle stability of hi-gh-capacity Ni-rich LiNi0.8Co0.1Mn0.1O2 at high cut-off voltage by Li2SiO3 coating[J]. Journal of Power Sources, 2017, 343:345-353.
doi: 10.1016/j.jpowsour.2017.01.066
|
[27] |
Wu J, Tan X, Zhang J, et al. Improvement of electrochemical perfor-mance of nickel rich LiNi0.8Co0.1Mn0.1O2 cathode by lithium alumi-nates surface modifications[J]. Energy Technology, 2019, 7(2):209-215.
doi: 10.1002/ente.v7.2
|
[28] |
Yang H, Du K, Hu G, et al. Graphene@TiO2 co-modified LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced electrochemi-cal performance under harsh conditions[J]. Electrochimica Acta, 2018, 289:149-157.
doi: 10.1016/j.electacta.2018.08.089
|
[29] |
Kong J Z, Chen Y, Cao Y Q, et al. Enhanced electrochemical per-formance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating[J]. Journal of Alloys and Compounds, 2019, 799:89-98.
doi: 10.1016/j.jallcom.2019.05.330
|
[30] |
Guo S, Yuan B, Zhao H, et al. Dual-component LixTiO2@silica funct-ional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode[J]. Nano Energy, 2019, 58:673-679.
doi: 10.1016/j.nanoen.2019.02.004
|
[31] |
Liu Y, Tang L B, Wei H X, et al. Enhancement on structural stabi-lity of Ni-rich cathode materials by in-situ fabricating dual-modi-fied layer for lithium-ion batteries[J]. Nano Energy, 2019, 65.Doi: 10.1016/j.nanoen.2019.104043.
|
[32] |
Liu W, Li X, Xiong D, et al. Significantly improving cycling perfor-mance of cathodes in lithium ion batteries:The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44:111-120.
doi: 10.1016/j.nanoen.2017.11.010
|
[33] |
Ran Q, Zhao H, Hu Y, et al. Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathodefor Li-ion batteries at high cut-off voltage[J]. Electrochimica Acta, 2018, 289:82-93.
doi: 10.1016/j.electacta.2018.08.091
|
[34] |
Yang H, Wu K P, Hu G R, et al. Design and synjournal of double-functional polymer composite layer coating to enhance the electro-chemical performance of the Ni-rich cathode at the upper cutoff voltage[J]. ACS Applied Materials & Interfaces, 2019, 11(8):8556-8566.
|
[35] |
Li J, Liu Y, Yao W, et al. Li2TiO3 and Li2ZrO3 co-modification LiNi0.8Co0.1Mn0.1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries[J]. Solid State Ionics, 2020, 349.Doi: 10.1016/j.ssi.2020.115292.
|
[36] |
Ma Y, Xu M, Zhang J, et al. Improving electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries by dual-conductive coating layer of PPy and LiAlO2[J]. Journal of Alloys and Compounds, 2020.Doi: 10.1016/j.jallcom.2020.156387.
|
[37] |
Ju S H, Kang I S, Lee Y S, et al. Improvement of the cycling perfor-mance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-con-ductive polymer coating[J]. ACS Applied Materials & Interfaces, 2014, 6(4):2546-2552.
|
[38] |
Li L J, Xu M, Yao Q, et al. Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanosc-ale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(45):30879-30889.
|
[39] |
Liang L, Wu C, Sun X, et al. Sur-/interface engineering of hierarc-hical LiNi0.6Co0.2Mn0.2O2@LiCoPO4@graphene architectures as pro-mising high-voltage cathodes toward advanced Li-ion batteries[J]. Advanced Materials Interfaces, 2017, 4(14).Doi: org/10.1002/admi.201770072.
|