无机盐工业 ›› 2022, Vol. 54 ›› Issue (2): 6-15.doi: 10.19964/j.issn.1006-4990.2021-0294
收稿日期:
2021-05-07
出版日期:
2022-02-10
发布日期:
2022-03-14
作者简介:
白小洁(1996— ),女,硕士,主要研究方向为半固态电极及储能器件;E-mail: 基金资助:
BAI Xiaojie1(),CAO Defu2,WANG Junhui1,LIU Hao1(),LIAO Libing2()
Received:
2021-05-07
Published:
2022-02-10
Online:
2022-03-14
摘要:
半固态储能电池结合了可充电电池的高能量密度和液流电池设计灵活的优点,是一种新型电化学储能技术,近年来受到人们的广泛关注。通过综述半固态电池在锂离子电池、锂硫电池、锌电池、空气电池、有机电池及其他不同类型的储能电池领域的研究进展,并探究了半固态电极中的活性材料、导电剂、电解液及电池结构对半固态电池性能的影响,进而对半固态电极发展中存在的问题进行了分析和总结,发现通过开发新材料与新化学体系,可有效提高半固态电池的性能。最后提出展望,今后半固态电池的研究重点为提高电池能量密度、循环稳定性以及降低浆料黏度等。
中图分类号:
白小洁,曹德富,王君慧,刘昊,廖立兵. 半固态储能电池的研究进展[J]. 无机盐工业, 2022, 54(2): 6-15.
BAI Xiaojie,CAO Defu,WANG Junhui,LIU Hao,LIAO Libing. Research progress on semi-solid energy storage batteries[J]. Inorganic Chemicals Industry, 2022, 54(2): 6-15.
[1] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935.
doi: 10.1126/science.1212741 |
[2] |
WANG W, LUO Q T, LI B, et al. Recent progress in redox flow ba-ttery research and development[J]. Advanced Functional Materials, 2013, 23(8):970-986.
doi: 10.1002/adfm.v23.8 |
[3] |
DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechar-geable flow battery[J]. Advanced Energy Materials, 2011, 1(4):511-516.
doi: 10.1002/aenm.201100152 |
[4] | 任雅琨, 陈永翀, 冯彩梅, 等. 锂离子液流电池电极悬浮液的电子导电性建模及仿真[J]. 现代科学仪器, 2014(3):84-89. |
[5] |
CHAYAMBUKA K, FRANSAER J, DOMINGUEZ-BENETTON X. Modeling and design of semi-solid flow batteries[J]. Journal of Po-wer Sources, 2019, 434.Doi: 10.1016/j.jpowsour.2019.226740.
doi: 10.1016/j.jpowsour.2019.226740 |
[6] |
SHUKLA G, FRANCO A A. Handling complexity of semisolid redox flow battery operation principles through mechanistic simulations[J]. The Journal of Physical Chemistry C:Nanomaterials and Interfaces, 2018, 122(42):23867-23877.
doi: 10.1021/acs.jpcc.8b06642 |
[7] |
LACROIX R, BIENDICHO J J, MULDER G, et al. Modelling the rheology and electrochemical performance of Li4Ti5O12 and LiNi1/3Co1/3Mn1/3O2 based suspensions for semi-solid flow batteries[J]. Electrochimica Acta, 2019, 304:146-157.
doi: 10.1016/j.electacta.2019.02.107 |
[8] |
SEN S, CHOW C M, MOAZZEN E, et al. Electroactive nanofluids with high solid loading and low viscosity for rechargeable redox flow batteries[J]. Journal of Applied Electrochemistry, 2017, 47(5):593-605.
doi: 10.1007/s10800-017-1063-4 |
[9] |
KURATANI K, ISHIBASHI K, KOMODA Y, et al. Controlling of di-spersion state of particles in slurry and electrochemical properties of electrodes[J]. Journal of the Electrochemical Society, 2019, 166(4):A501-A506.
doi: 10.1149/2.0111904jes |
[10] | 冯彩梅, 张晓虎, 陈永翀, 等. 新型电化学储能技术:半固态锂电池[J]. 科技通报, 2017, 33(8):19-26,179. |
[11] | 陈永翀, 武明晓, 任雅琨, 等. 锂离子液流电池的研究进展[J]. 电工电能新技术, 2012, 31(3):81-85. |
[12] | CHEN H N, LAI N C, LU Y C. Silicon-carbon nanocomposite semi-solid negolyte and its application in redox flow batteries[J]. Che-mistry of Materials, 2017, 29(17):7533-7542. |
[13] |
WU Y Y, CAO D F, BAI X J, et al. Effects of non-ionic surfactants on the rheological,electrical and electrochemical properties of highly loaded silicon suspension electrodes for semi-solid flow ba-tteries[J]. ChemElectroChem, 2020, 7(17):3623-3631.
doi: 10.1002/celc.v7.17 |
[14] |
VENTOSA E, SKOUMAL M, VAZQUEZ F J, et al. Electron bottl-eneck in the charge/discharge mechanism of lithium titanates for batteries[J]. ChemSusChem, 2015, 8(10):1737-1744.
doi: 10.1002/cssc.201500349 |
[15] |
MADEC L, YOUSSRY M, CERBELAUD M, et al. Electronic vs io-nic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161(5):A693-A699.
doi: 10.1149/2.035405jes |
[16] |
QI Z X, KOENIG G M. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries[J]. Journal of Power Sources, 2016, 323:97-106.
doi: 10.1016/j.jpowsour.2016.05.033 |
[17] |
VENTOSA E, ZAMPARDI G, FLOX C, et al. Solid electrolyte in-terphase in semi-solid flow batteries:A wolf in sheep′s clothing[J]. Chemical Communications, 2015, 51(81):14973-14976.
doi: 10.1039/C5CC04767F |
[18] |
QI Z X, LIU A L, KOENIG G M. Carbon-free solid dispersion LiCoO2 redox couple characterization and electrochemical evalua-tion for all solid dispersion redox flow batteries[J]. Electrochimica Acta, 2017, 228:91-99.
doi: 10.1016/j.electacta.2017.01.061 |
[19] |
WEI T S, FAN F Y, HELAL A, et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density,fast charge transport,and low-dissipation flow[J]. Advanced Energy Materi-als, 2015, 5(15).Doi: 10.1002/aenm.201500535.
doi: 10.1002/aenm.201500535 |
[20] | DANIEL R G, ZAHILIA C H, SERGI S R, et al. Battery and super-capacitor materials in flow cells.Electrochemical energy storage in a LiFePO4/reduced graphene oxide aqueous nanofluid[J]. Elec-trochimica Acta, 2018, 281(5):594-600. |
[21] |
LI Z, SMITH K C, DONG Y J, et al. Aqueous semi-solid flow cell:Demonstration and analysis[J]. Physical Chemistry Chemical Phy-sics, 2013, 15(38).Doi: 10.1039/c3cp53428f.
doi: 10.1039/c3cp53428f |
[22] |
FENG C M, CHEN Y C, LIU D D, et al. Conductivity and electro-chemical performance of LiFePO4 slurry in the lithium slurry ba-ttery[J]. IOP Conference Series:Materials Science and Engineer-ing, 2017, 207(1).Doi: 10.1088/1757-899X/207/1/012076.
doi: 10.1088/1757-899X/207/1/012076 |
[23] | 高静, 陈剑, 衣宝廉. 半固态LiFePO4液流电池的研究与制备[J]. 电源技术, 2018, 42(11):1690-1693. |
[24] |
QI C L, MA X L, NING G Q, et al. Aqueous slurry of S-doped car-bon nanotubes as conductive additive for lithium ion batteries[J]. Carbon, 2015, 92:245-253.
doi: 10.1016/j.carbon.2015.04.028 |
[25] | TIAN X Q, FENG C M, JIANG H, et al. Surface modification of po-sitive current collector for lithium slurry battery[J]. Advanced Te-chnology of Electrical Engineering and Energy, 2019, 38(9):59-66. |
[26] |
BIENDICHO J J, FLOX C, SANZ L, et al. Static and dynamic stu-dies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries[J]. ChemSusChem, 2016, 9(15):1938-1944.
doi: 10.1002/cssc.v9.15 |
[27] |
ZHENG Q, NIU Z H, YE J, et al. High voltage,transition metal complex enables efficient electrochemical energy storage in a Li-ion battery full cell[J]. Advanced Functional Materials, 2017, 27(4).Doi: 10.1002/adfm.201604299.
doi: 10.1002/adfm.201604299 |
[28] | SONG Z P, ZHOU H S. Towards sustainable and versatile energy storage devices:An overview of organic electrode materials[J]. Energy & Environmental Science, 2013, 6(8):2280-2301. |
[29] |
PENG H J, HUANG J Q, CHENG X B, et al. Review on high-load-ing and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24).Doi: 10.1002/aenm.201700260.
doi: 10.1002/aenm.201700260 |
[30] |
XU S, CHENG Y Y, ZHANG L, et al. An effective polysulfides brid-gebuilder to enable long-life lithium-sulfur flow batteries[J]. Nano Energy, 2018, 51:113-121.
doi: 10.1016/j.nanoen.2018.06.044 |
[31] |
CHEN H N, ZOU Q L, LIANG Z J, et al. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries[J]. Nature Communications, 2015, 6.Doi: 10.1038/ncomms6877.
doi: 10.1038/ncomms6877 |
[32] |
CHEN H N, LU Y C. A high-energy-density multiple redox semi- solid-liquid flow battery[J]. Advanced Energy Materials, 2016, 6(8).Doi: 10.1002/aenm.201502183.
doi: 10.1002/aenm.201502183 |
[33] |
XU S, ZHANG L, ZHANG X P, et al. A self-stabilized suspension catholyte to enable long-term stable Li-S flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(25):12904-12913.
doi: 10.1039/C7TA02110K |
[34] |
DONG K, WANG S P, YU J X. A lithium/polysulfide semi-solid rechargeable flow battery with high output performance[J]. RSC Advances, 2014, 4(88):47517-47520.
doi: 10.1039/C4RA08413F |
[35] |
FAN F Y, WOODFORD W H, LI Z, et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks[J]. Nano Letters, 2014, 14(4):2210-2218.
doi: 10.1021/nl500740t |
[36] |
SOLOMON B R, CHEN X W, RAPOPORT L, et al. Enhancing the performance of viscous electrode-based flow batteries using lubri-cant-impregnated surfaces[J]. ACS Applied Energy Materials, 2018, 1(8):3614-3621.
doi: 10.1021/acsaem.8b00241 |
[37] |
ZHOU Y C, CONG G T, CHEN H N, et al. A self-mediating redox flow battery:High-capacity polychalcogenide-based redox flow ba-ttery mediated by inherently present redox shuttles[J]. ACS Energy Letters, 2020, 5(6):1732-1740.
doi: 10.1021/acsenergylett.0c00611 |
[38] |
GU S, HUANG X, WANG Q, et al. A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(27):13971-13975.
doi: 10.1039/C7TA04017B |
[39] | 方飞, 张文魁, 施媛媛, 等. 可充电锌电极的研究现状和进展[J]. 浙江化工, 2004, 35(7):23-25. |
[40] | VENTOSA E, AMEDU O, SCHUHMANN W. Aqueous mixed-cation semi-solid hybrid-flow batteries[J]. ACS Applied Energy Materi-als, 2018, 1(10):5158-5162. |
[41] | XIE C X, LI T Y, DENG C Z, et al. A highly reversible neutral zinc/manganese battery for stationary energy storage[J]. Energy & En- vironmental Science, 2020, 13(1):135-143. |
[42] | MUBEEN S, JUN Y S, LEE J, et al. Solid suspension flow batteries using earth abundant materials[J]. ACS Applied Materials & In-terfaces, 2016, 8(3):1759-1765. |
[43] |
LIU J, WANG Y. Preliminary study of high energy density Zn/Ni flow batteries[J]. Journal of Power Sources, 2015, 294:574-579.
doi: 10.1016/j.jpowsour.2015.06.110 |
[44] | ZHU Y G, NARAYANAN T M, TULODZIECKI M, et al. High-en-ergy and high-power Zn-Ni flow batteries with semi-solid electro-des[J]. Sustainable Energy & Fuels, 2020, 4:4076-4085. |
[45] | SOAVI F, RUGGERI I, ARBIZZANI C. Design study of a novel,semi-solid Li/O2 redox flow battery[J]. ECS Transactions, 2016, 72(9):1-9. |
[46] |
RUGGERI I, ARBIZZANI C, SOAVI F. A novel concept of semi-solid,Li redox flow air(O2) battery,a breakthrough towards high energy and power batteries[J]. Electrochimica Acta, 2016, 206:291-300.
doi: 10.1016/j.electacta.2016.04.139 |
[47] |
RUGGERI I, ARBIZZANI C, SOAVI F. Carbonaceous catholyte for high energy density semi-solid Li/O2 flow battery[J]. Carbon, 2018, 130:749-757.
doi: 10.1016/j.carbon.2018.01.056 |
[48] |
MORI R. Semi-solid-state aluminium-air batteries with electrolytes composed of aluminium chloride hydroxide with various hydropho-bic additives[J]. Physical Chemistry Chemical Physics, 2018, 20(47):29983-29988.
doi: 10.1039/C8CP03997F |
[49] |
KUPSCH C, WEIK D, FEIERABEND L, et al. Vector flow imaging of a highly-laden suspension in a zinc-air flow battery model[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2019, 66(4):761-771.
doi: 10.1109/TUFFC.58 |
[50] |
ZHAO Y F, SI S H, WANG L, et al. Electrochemical study on poly-pyrrole microparticle suspension as flowing anode for manganese dioxide rechargeable flow battery[J]. Journal of Power Sources, 2014, 248:962-968.
doi: 10.1016/j.jpowsour.2013.10.008 |
[51] |
CHEN H N, ZHOU Y C, LU Y C. Lithium-organic nanocomposite suspension for high-energy-density redox flow batteries[J]. ACS Energy Letters, 2018, 3(8):1991-1997.
doi: 10.1021/acsenergylett.8b01257 |
[52] |
ZHANG X F, ZHANG P Y, CHEN H N. Organic multiple redox se-mi-solid-liquid suspension for Li-based hybrid flow battery[J]. ChemSusChem, 2021, 14:1-9.
doi: 10.1002/cssc.v14.1 |
[53] |
XING X Q, LIU Q H, LI J, et al. A nonaqueous all organic semisolid flow battery[J]. Chemical Communications, 2019, 55(94):14214-14217.
doi: 10.1039/C9CC07937H |
[54] |
YAN W, WANG C X, TIAN J Q, et al. All-polymer particulate sl-urry batteries[J]. Nature Communications, 2019, 10(1).Doi: 10.1038/s41467-019-10607-0.
doi: 10.1038/s41467-019-10607-0 |
[55] | CAO H J, SI S H, XU X B, et al. Electrochemical study of a three-dimensional Zn-Mn alloy//Mn-doped polyaniline suspension flow battery with enhanced electrochemical performance[J]. Interna-tional Journal of Electrochemical Science, 2020, 15:4188-4202. |
[56] |
MUNOZ-TORRERO D, PALMA J, MARCILLA R, et al. Al-ion battery based on semisolid electrodes for higher specific energy and lower cost[J]. ACS Applied Energy Materials, 2020, 3(3):2285-2289.
doi: 10.1021/acsaem.9b02253 |
[57] | PETEK T J, HOYT N C, SAVINELL R F, et al. Slurry electrodes for iron plating in an all-iron flow battery[J]. Journal of Power So-urces, 2015, 294:620-626. |
[1] | 杨游胜, 姚智豪, 赵志星, 冯霞, 曾英, 于旭东. 富锂硫酸盐型盐湖卤水蒸发实验研究进展[J]. 无机盐工业, 2024, 56(4): 1-7. |
[2] | 钱志慧, 朱琴, 马姣, 郭昱娇, 向明武, 郭俊明. 纳米级LiNi0.05Mn1.95O4正极材料制备及电化学性能研究[J]. 无机盐工业, 2024, 56(4): 50-56. |
[3] | 王好芳. 磷酸钛铝锂基全固态金属锂电池界面稳定性研究[J]. 无机盐工业, 2024, 56(4): 72-77. |
[4] | 陈海霞, 严红, 孙云龙, 马国强. 锂资源提取技术研究进展[J]. 无机盐工业, 2024, 56(1): 9-22. |
[5] | 朱瑞松, 曹靖, 刘陶然, 李应文, 高飞, 胡雪生. 全球非常规卤水的提锂技术及产业化研究进展[J]. 无机盐工业, 2023, 55(11): 1-11. |
[6] | 李慧芳, 王晓, 白有鹏, 张世翔. 溶剂萃取法从低品位高黏土浸出液中提取锂的研究[J]. 无机盐工业, 2023, 55(10): 63-69. |
[7] | 付煜, 邓觅, 黄冬根, 万金保. 盐湖卤水提锂技术研究进展[J]. 无机盐工业, 2023, 55(9): 9-16. |
[8] | 王航, 徐川, 严新星, 涂明江, 陈欣. 电池级碳酸锂深度除钙工艺研究进展[J]. 无机盐工业, 2023, 55(7): 18-24. |
[9] | 于惠, 王榆彬, 廖折军, 杨云广. 废旧三元锂离子动力电池循环再生利用工艺概述[J]. 无机盐工业, 2023, 55(7): 32-37. |
[10] | 韩红静, 张竞择, 拉毛卓玛, 韩吉者, 吴勇民, 汤卫平. 铝钴共掺杂锂锰氧化物的制备及吸附提锂性能[J]. 无机盐工业, 2023, 55(7): 38-44. |
[11] | 卢娜娜, 秦亚茹, 马淑清, 王琪慧, 刘兵, 石成龙. 吡啶类离子液体体系对模拟盐湖老卤中锂的萃取研究[J]. 无机盐工业, 2023, 55(7): 45-50. |
[12] | 陆钧皓. 退役三元动力锂电池全元素循环再利用工艺研究[J]. 无机盐工业, 2023, 55(6): 92-103. |
[13] | 徐前进,徐金钢,田朋,刘坤吉,高婷婷,宁桂玲. 氧化铝包覆锂离子电池正极材料的研究进展[J]. 无机盐工业, 2023, 55(1): 46-55. |
[14] | 祝悦,裘晟波,刘程琳,于建国. 机械活化法强化锂辉石矿相重构过程研究[J]. 无机盐工业, 2023, 55(1): 81-86. |
[15] | 李岩,王岩松,成怀刚,康锦,李恩泽,吕宏洲,刘倩. 基于水溶性探针法测镁的高纯碳酸锂快速质检[J]. 无机盐工业, 2023, 55(1): 87-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|