无机盐工业 ›› 2024, Vol. 56 ›› Issue (12): 62-69.doi: 10.19964/j.issn.1006-4990.2024-0052
收稿日期:
2024-01-26
出版日期:
2024-12-10
发布日期:
2024-12-31
通讯作者:
刘建允(1973— ),女,教授,博导,主要从事环境电化学及盐湖提锂研究;E-mail:jianyun.liu@dhu.edu.cn。作者简介:
付煜(1993— ),男,博士,工程师,主要从事环保工程设计与盐湖提锂应用研究;E-mail:3249487385@qq.com。
基金资助:
FU Yu1(), ZHANG Boshuang1, YANG Jianmao2, LIU Jianyun1,3(
)
Received:
2024-01-26
Published:
2024-12-10
Online:
2024-12-31
摘要:
电化学提锂技术具有分离效率高、成本低和环境友好等优点,被广泛应用于盐湖卤水、地热水及海水等锂资源领域。电化学提锂系统依靠具有选择性的电极材料来实现锂离子(Li+)的选择性吸附,提锂性能主要由锂选择性电极材料决定。在众多锂选择性电极材料中,锰酸锂(LiMn2O4,LMO)具有电化学活性高、吸附容量大、选择性优异和安全无毒等优点,成为目前电化学提锂系统中最常用的锂选择性材料。然而,LMO本身较差的电子导电性、锰溶损和相转变等问题,使其在长期稳定电化学提锂应用中表现较差,极大地制约了其商业化应用。基于此,主要介绍了电化学提锂技术的原理和LMO材料在电化学提锂中的应用,并且总结和概述了LMO的主要改性方法,包括元素掺杂、表面包覆、结构调控和导电材料复合等。最后,从反应机理上概括了LMO现有的改性策略,并从实际应用的角度对电化学提锂系统的升级优化进行了展望和建议。
中图分类号:
付煜, 张柏爽, 杨健茂, 刘建允. 锰酸锂材料在电化学提锂应用中的研究进展[J]. 无机盐工业, 2024, 56(12): 62-69.
FU Yu, ZHANG Boshuang, YANG Jianmao, LIU Jianyun. Research progress of lithium manganese oxide materials in electrochemical lithium extraction applications[J]. Inorganic Chemicals Industry, 2024, 56(12): 62-69.
[1] | MARTIN G, RENTSCH L, HÖCK M,et al.Lithium market research-global supply,future demand and price development[J].Energy Storage Materials,2017,6:171-179. |
[2] | EBENSPERGER A, MAXWELL P, MOSCOSO C.The lithium industry:Its recent evolution and future prospects[J].Resources Policy,2005,30(3):218-231. |
[3] | DUCHANOIS R M, COOPER N J, LEE B,et al.Prospects of metal recovery from wastewater and brine[J].Nature Water,2023,1:37-46. |
[4] | SWAIN B.Recovery and recycling of lithium:A review[J].Separation and Purification Technology,2017,172:388-403. |
[5] | ZHANG Ye, SUN Wei, XU Rui,et al.Lithium extraction from water lithium resources through green electrochemical-battery approaches:A comprehensive review[J].Journal of Cleaner Production,2021,285:124905. |
[6] | ZHANG Tong, ZHENG Wenjia, WANG Qiaoying,et al.Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine:A comprehensive review[J].Desalination,2023,546:116205. |
[7] | ZHU Li, GU Hannian, WEN Hanjie,et al.Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process[J].Hydrometallurgy,2021,206:105759. |
[8] | ROZELLE P L, FEINEMAN M D, WHITE T S,et al.The mercer clay in Pennsylvania as a polymetallic mineral resource:Review and update[J].Mining,Metallurgy & Exploration,2021,38(5):2037-2054. |
[9] | CHRISTMANN P, GLOAGUEN E, LABBÉ J F,et al.Global lithium resources and Sustainability issues[M]//Lithium Process Chemistry.Amsterdam:Elsevier,2015:1-40. |
[10] | GARRETT D E.Calcium chloride[M]//Handbook of Lithium and Natural Calcium Chloride.Amsterdam:Elsevier,2004:237-457. |
[11] | ZHAO Xiaoyu, YANG Haocun, WANG Yanfei,et al.Review on the electrochemical extraction of lithium from seawater/brine[J].Journal of Electroanalytical Chemistry,2019,850:113389. |
[12] | ZHANG Ye, HU Yuehua, WANG Li,et al.Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J].Minerals Engineering,2019,139:105868. |
[13] | SUN Ying, WANG Qi, WANG Yunhao,et al.Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J].Separation and Purification Technology,2021,256:117807. |
[14] | ZUO Kuichang, GARCIA-SEGURA S, CERRÓN-CALLE G A,et al.Electrified water treatment:Fundamentals and roles of electrode materials[J].Nature Reviews Materials,2023,8:472-490. |
[15] | CAI Wenshu, YAN Junbin, HUSSIN T,et al.Nafion-AC-based asymmetric capacitive deionization[J].Electrochimica Acta,2017,225:407-415. |
[16] | HU Bin, SHANG Xiaohong, NIE Pengfei,et al.Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization[J].Journal of Colloid and Interface Science,2022,612:392-400. |
[17] | CAI Wenshu, XIONG Zhubiao, HUSSAIN T,et al.Porous MnO x |
covered electrospun carbon nanofiber for capacitive deionization[J].Journal of the Electrochemical Society,2016,163(13):A2515-A2523. | |
[18] | 陈海霞,严红,孙云龙,等.锂资源提取技术研究进展[J].无机盐工业,2024,56(1):9-22. |
CHEN Haixia, YAN Hong, SUN Yunlong,et al.Research progress of lithium resource extraction technology[J].Inorganic Che-Industry micals,2024,56(1):9-22. | |
[19] | 付煜,邓觅,黄冬根,等.盐湖卤水提锂技术研究进展[J].无机盐工业,2023,55(9):9-16,65. |
FU Yu, DENG Mi, HUANG Donggen,et al.Research progress of lithium extraction technology from salt lake brine[J].Inorganic Chemicals Industry,2023,55(9):9-16,65. | |
[20] | XIA Hui, XIA Qiuying, LIN Binghui,et al.Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries[J].Nano Energy,2016,22:475-482. |
[21] | MAO Fangxin, GUO Wei, MA Jianmin.Research progress on design strategies,synthesis and performance of LiMn2O4-based cathodes[J].RSC Advances,2015,5(127):105248-105258. |
[22] | ZHANG Qinhui, LI Shaopeng, SUN Shuying,et al.LiMn2O4 spinel direct synthesis and lithium ion selective adsorption[J].Chemical Engineering Science,2010,65(1):169-173. |
[23] | XU Wenhua, HE Lihua, ZHAO Zhongwei.Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials [J].Desalination.Doi:10.1016/j.desal.2021.114935. |
[24] | WANG Meiling, ZHANG Tianyuan, MENG Zhixiang,et al.Self-intercepting interference of hydrogen-bond induced flexible hybrid film to facilitate lithium extraction[J].Chemical Engineering Journal,2023,458:141403. |
[25] | HOU Xudong, LIU Xuguang, WANG Huan,et al.Specific countermeasures to intrinsic capacity decline issues and future direction of LiMn2O4 cathode[J].Energy Storage Materials,2023,57:577-606. |
[26] | BATTISTEL A, PALAGONIA M S, BROGIOLI D,et al.Electrochemical methods for lithium recovery:A comprehensive and critical review[J].Advanced Materials,2020,32(23):1905440. |
[27] | SHANG Xiaohong, LIU Jianyun, HU Bin,et al.CNT-strung LiMn2O4 for lithium extraction with high selectivity and stabili- ty[J].Small Methods,2022,6(7):2200508. |
[28] | YANG Jinfeng, SHANG Xiaohong, HU Bin,et al. In situ growth of LiMn2O4 on graphene oxide for efficient lithium extraction by capacitive deionization[J].Journal of Solid State Electrochemistry,2023,27(8):2029-2037. |
[29] | HU Bin, ZHANG Boshuang, WANG Yiwen,et al.Prussian blue analogue derived 3D hollow LiCoMnO4 nanocube for selective extraction of lithium by pseudo-capacitive deionization[J].Desalination,2023,560:116662. |
[30] | CHU Meile, TIAN Weijun, ZHAO Jing,et al.Dual-activated biochar with a multichannel structure enhanced electrosorption capacity of capacitive deionization for sulfate removal from mining wastewater[J].Desalination,2023,556:116588. |
[31] | TU Xubin, LIU Yong, WANG Kai,et al.Ternary-metal Prussian blue analogues as high-quality sodium ion capturing electrodes for rocking-chair capacitive deionization[J].Journal of Colloid and Interface Science,2023,642:680-690. |
[32] | CHEN Zeqiu, XU Xingtao, WANG Kai,et al.Hybrid of pyrazine based π-conjugated organic molecule and MXene for hybrid capacitive deionization[J].Separation and Purification Technology,2023,315:123628. |
[33] | CALVO E J.Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation[J].ACS Omega,2021,6(51):35213-35220. |
[34] | ZHAO Along, LIU Jincheng, AI Xinping,et al.Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/Li x Mn2O4 cell[J].ChemSusChem,2019,12(7):1361-1367. |
[35] | ZHAO Mengyao, JI Zhiyong, ZHANG Yongguang,et al.Study on lithium extraction from brines based on LiMn2O4/Li1- x Mn2O4 by electrochemical method[J].Electrochimica Acta,2017,252:350-361. |
[36] | MU Yingxin, ZHANG Chengyi, ZHANG Wen,et al.Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes[J].Desalination,2021,511:115112. |
[37] | CHENG Haiyun, MA Caiyu, LI Wenyao.Facile synthesis of porous LiMn2O4 nano-cubes for ultra-stable lithium-ion battery cathodes[J].New Journal of Chemistry,2023,47(11):5244-5248. |
[38] | JIANG Yuxin, LI Ken, ALHASSAN S I,et al.Spinel LiMn2O4 as a capacitive deionization electrode material with high desalination capacity:Experiment and simulation[J].International Journal of Environmental Research and Public Health,2022,20(1):517. |
[39] | XIE Ning, LI Yaqian, LU Yue,et al.Electrochemically controlled reversible lithium capture and release enabled by LiMn2O4 nanorods[J].ChemElectroChem,2020,7(1):105-111. |
[40] | KIM S, LEE J, KIM S,et al.Electrochemical lithium recovery with a LiMn2O4-zinc battery system using zinc as a negative electrode[J].Energy Technology,2018,6(2):340-344. |
[41] | YU Yue, WANG Shimin, GUO Junming,et al.Facile synthesis of Ni-doped nano-LiMn2O4(0≤x≤0.10) cathode materials and their electrochemical performances[J].International Journal of Electrochemical Science,2018,13(10):9950-9963. |
[42] | TIAN Guiying, GAO Jian, WANG Minrui,et al.Structural stabilization of Cr-doped spinel LiMn2O4 for long-term cyclability towards electrochemical lithium recovery in original brine[J].Electrochimica Acta,2024,475:143361. |
[43] | LUO Fenglan, XIE Hongyan, JIN Huixin,et al.Hydrothermal synthesis of Mg-doped LiMn2O4 spinel cathode materials with high cycling performance for lithium-ion batteries[J].International Journal of Electrochemical Science,2022,17(6):220632. |
[44] | LEE S N, PARK D H, KIM J H,et al.Enhanced cycling performance of Fe-doped LiMn2O4 truncated octahedral cathodes for Li-ion batteries[J].ChemElectroChem,2022,9(11):e202200385. |
[45] | ZHAO Hongyuan, GAO Xinyang, LI Yongfeng,et al.Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material[J].Ceramics International,2019,45(14):17591-17597. |
[46] | WU Xianming, HE Zeqiang, CHEN Shang,et al.Silver-doped lithium manganese oxide thin films prepared by solution deposition[J].Materials Letters,2006,60(20):2497-2500. |
[47] | TAO Yang, LIU Qing, GUO Yujiao,et al.Regulation of morphology evolution and Mn dissolution for ultra-long cycled spinel LiMn2O4 cathode materials by B-doping[J].Journal of Power Sources,2022,524:231073. |
[48] | CHEN Minmin, WU Ruyun, JU Shengui,et al.Improved performance of Al-doped LiMn2O4 ion-sieves for Li+ adsorption[J].Microporous and Mesoporous Materials,2018,261:29-34. |
[49] | MADHU M, VENKATESWARA RAO A, MUTYALA S.La and Ni co-doping effect in LiMn2O4 on structural and electrochemical properties for lithium-ion batteries[J].Journal of Electronic Materials,2021,50(9):5141-5149. |
[50] | XIANG Mingwu, ZHOU Xianyan, ZHANG Zhifang,et al.LiMn2O4 prepared by liquid phase flameless combustion with F-doped for lithium-ion battery cathode materials[J].Advanced Materials Research,2013,652-654:825-830. |
[51] | KUBICKA M, BAKIERSKA M, ŚWIĘTOSŁAWSKI M,et al.The temperature effect on the electrochemical performance of sulfur-doped LiMn2O4 in Li-ion cells[J].Nanomaterials,2019,9(12):1722. |
[52] | YE S H, BO J K, LI C Z,et al.Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method[J].Electrochimica Acta,2010,55(8):2972-2977. |
[53] | WU You, SHI Pitong, ZHONG Yijun,et al.Improved performance of a Ni,Co-doped LiMn2O4 electrode for lithium extraction from brine[J].Energy & Fuels,2023,37(5):4083-4093. |
[54] | ZHAO Xiaoyu, LI Guangyu, FENG Minghui,et al.Semi-continuous electrochemical extraction of lithium from brine using CF-NMMO/AC asymmetric hybrid capacitors[J].Electrochimica Acta,2020,331:135285. |
[55] | SHANG Xiaohong, HU Bin, NIE Pengfei,et al.LiNi0.5Mn1.5O4-based hybrid capacitive deionization for highly selective adsorption of lithium from brine[J].Separation and Purification Technology,2021,258:118009. |
[56] | LUO Guiling, LI Xiaowei, CHEN Linlin,et al.Island-like CeO2 decorated LiMn2O4:Surface modification enhancing electrochemical lithium extraction and cycle performance[J].Chemical Engineering Journal,2023,455:140928. |
[57] | LUO Guiling, ZHU Lin, LI Xiaowei,et al.Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3-ZrO2 coated LiMn2O4 electrode[J].Journal of Energy Chemistry,2022,69:244-252. |
[58] | DU Xiao, GUAN Guoqing, LI Xiumin,et al.A novel electroactive λ-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration[J].Journal of Materials Chemistry A,2016,4(36):13989-13996. |
[59] | ZHANG Zheng, ZHANG Jinfeng, ZHANG Zhihua,et al.Cross-linked PVDF-b-PAA composite binder enhanced LiMn2O4/C film based electrode for selective extraction of lithium from brine with a high Mg/Li ratio[J].Separation and Purification Technology,2023,316:123777. |
[60] | ZHAO Xiaoyu, JIAO Yaoxin, XUE Peijie,et al.Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inorganic-gel framework electrode[J].ACS Sustainable Chemistry & Engineering,2020,8(12):4827-4837. |
[61] | GU Jun, ZHOU Guolang, CHEN Linlin,et al.Particle size control and electrochemical lithium extraction performance of LiMn2O4 [J].Journal of Electroanalytical Chemistry,2023,940:117487. |
[62] | MA Guangqiang, XU Yingsheng, CAI Anjiang,et al.Binder-free LiMn2O4 nanosheets on carbon cloth for selective lithium extraction from brine via capacitive deionization[J].Small,2024,20(9):2306530. |
[63] | ZHOU Guolang, LI Xiaowei, CHEN Linlin,et al.Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine[J].Chinese Journal of Chemical Engineering,2023,54:316-322. |
[64] | ZHAO Xiaoyu, ZHENG Lixiao, HOU Yongdan,et al.Pulsed electric field controlled lithium extraction process by LMO/MXene composite electrode from brines[J].Chemical Engineering Journal,2022,450:138454. |
[65] | CHEN Lina, ZHENG Xiaowen, HAO Chongyang,et al.A high-energy,long cycle life aqueous hybrid supercapacitor enabled by efficient battery electrode and widened potential window[J].Journal of Alloys and Compounds,2021,877:160273. |
[1] | 张豹, 权凯栋, 王永锋, 韩非, 史爱文, 刘欣, 王晓敏. 纳米花状Fe y -NiCoS x @NF催化材料制备及电解海水制氢析氧的研究[J]. 无机盐工业, 2025, 57(2): 130-137. |
[2] | 袁帅, 方杨飞, 杨向光, 张一波. 稀土掺杂CeO2的合成及其CMP性能研究[J]. 无机盐工业, 2024, 56(12): 35-41. |
[3] | 付煜, 邓觅, 黄冬根, 万金保. 盐湖卤水提锂技术研究进展[J]. 无机盐工业, 2023, 55(9): 9-16. |
[4] | 潘晓晓, 庄树新, 孙雨晴, 孙高星, 任艳, 蒋声育. 动力型磷酸铁锂正极材料改性的研究进展[J]. 无机盐工业, 2023, 55(6): 18-26. |
[5] | 朱志红, 朱永芳. 硅掺杂锰酸锂的自蔓延燃烧制备及其性能研究[J]. 无机盐工业, 2023, 55(5): 66-70. |
[6] | 徐前进,徐金钢,田朋,刘坤吉,高婷婷,宁桂玲. 氧化铝包覆锂离子电池正极材料的研究进展[J]. 无机盐工业, 2023, 55(1): 46-55. |
[7] | 刘卓钦,周晓崇,莫梁君. 硼酸锂包覆改性尖晶石锰酸锂的研究[J]. 无机盐工业, 2022, 54(9): 90-95. |
[8] | 周兰,李旺,廖文俊. 界面化学对镍锰酸锂正极材料电化学性能影响的研究现状及分析[J]. 无机盐工业, 2021, 53(11): 17-24. |
[9] | 刘洋,蔡宗英,曹卫刚,刘玉召. 锂离子电池材料钛酸锂钠的研究进展[J]. 无机盐工业, 2021, 53(10): 36-40. |
[10] | 许乃才,史丹丹,黎四霞. 介孔氧化铝的结构调控及除氟性能研究[J]. 无机盐工业, 2020, 52(6): 20-23. |
[11] | 张洁,赵梦杰,崔颍琦,李成刚,高金海. 掺杂对CeO2基电解质材料性能的影响研究进展[J]. 无机盐工业, 2020, 52(5): 1-5. |
[12] | 李旺,周兰,刘佳丽. 镍锰酸锂正极材料及其适配性电解液研究最新进展[J]. 无机盐工业, 2019, 51(6): 5-10. |
[13] | 李 洁, 罗传军, 叶文豪. 沉淀法制备纳米氧化铝包覆改性尖晶石锰酸锂研究[J]. 无机盐工业, 2016, 48(9): 45-. |
[14] | 张沿江, 武行兵, 姜雨恒. 两种不同结构锰酸锂电化学性能对比[J]. 无机盐工业, 2016, 48(6): 67-. |
[15] | . 锂离子电池正极材料技术研究进展[J]. 无机盐工业, 2015, 47(6): 1-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|