[1] |
DAVIDOVITS J. Mineral polymers and methods of making them:US,4349386[P]. 1982-09-14.
|
[2] |
DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Jour-nal of Thermal Analysis, 1989, 35(2):429-441.
|
[3] |
CELIK A, YILMAZ K, CANPOLAT O, et al. High-temperature be-havior and mechanical characteristics of boron waste additive meta-kaolin based geopolymer composites reinforced with synthetic fi-bers[J]. Construction and Building Materials, 2018, 187:1190-1203.
doi: 10.1016/j.conbuildmat.2018.08.062
|
[4] |
程海丽, 杨飞华, 马保国, 等. 高铝煤矸石复合活化及其火山灰效应分析[J]. 建筑材料学报, 2016, 19(2):248-254.
|
[5] |
孙大全, 顾泽宇, 孙硕, 等. 碱激发粉煤灰-硅灰基地质聚合物的性能及表征[J]. 硅酸盐通报, 2020, 39(5):1533-1539.
|
[6] |
易鸣, 吴大志, 夏琳玲. 偏高岭土地质聚合物的制备及其抗压强度研究[J]. 粉煤灰综合利用, 2019, 32(6):31-35,71.
|
[7] |
YURT Ü. High performance cementless composites from alkali acti-vated GGBFS[J]. Construction and Building Materials, 2020, 264.Doi: 10.1016/j.conbuildmat.2020.120222.
doi: 10.1016/j.conbuildmat.2020.120222
|
[8] |
张耀君, 赵永林, 李海宏, 等. 水玻璃激发矿渣制备纳米地质聚合物研究[J]. 非金属矿, 2009, 32(1):39-41,44.
|
[9] |
NASIR M, JOHARI M A M, MASLEHUDDIN M, et al. Magnesium sulfate resistance of alkali/slag activated silico-manganese fume-ba-sed composites[J]. Construction and Building Materials, 2020, 265.Doi: 10.1016/j.conbuildmat.2020.120851.
doi: 10.1016/j.conbuildmat.2020.120851
|
[10] |
关虓, 陈霁溪, 高扬, 等. NaOH碱激发煤矸石胶砂试块力学性能及微观结构[J]. 西安科技大学学报, 2020, 40(4):658-664.
|
[11] |
MUTHADHI A, SUGANYA B. Effect of activator on strength and microstructure of alkali activated concrete with class C fly ash[J]. Iranian Journal of Science and Technology,Transactions of Civil Engineering, 2021.Doi: 10.1007/s40996-021-00600-3.
doi: 10.1007/s40996-021-00600-3
|
[12] |
王淑玲. 碱激发粉煤灰制备地质聚合物及其性能研究[D]. 长沙:长沙理工大学, 2016.
|
[13] |
杨凡. 不同激发剂对矿渣水泥强度的影响[J]. 铁道技术监督, 2010, 38(10):18-21.
|
[14] |
张雪芳, 李艳, 柴淑媛, 等. 激发剂模数对高硅低钙粉煤灰基地聚物力学性能的影响研究[J]. 墙材革新与建筑节能, 2019(11):63-66.
|
[15] |
CUI X M, ZHENG G J, HAN Y C, et al. A study on electrical con-ductivity of chemosynthetic Al2O3-2SiO2 geoploymer materials[J]. Journal of Power Sources, 2008, 184(2):652-656.
doi: 10.1016/j.jpowsour.2008.03.021
|
[16] |
TCHAKOUTE H K, RUESCHER C H, KAMSEU E, et al. Influence of the molar concentration of phosphoric acid solution on the pro-perties of metakaolin-phosphate-based geopolymer cements[J]. Applied Clay Science, 2017, 147:184-194.
doi: 10.1016/j.clay.2017.07.036
|
[17] |
刘建, 刘派, 丁铸. 磷酸盐基矿聚物材料的制备与机理研究[J]. 深圳大学学报:理工版, 2020, 37(6):597-603.
|
[18] |
邢书银, 田亮亮, 王海霞, 等. 磷酸基偏高岭土地质聚合物研究[J]. 青海大学学报:自然科学版, 2015, 33(6):30-35.
|
[19] |
龚志林. 失效磷酸基抛光液与赤泥反应制备地质聚合物的工艺探讨[J]. 当代化工研究, 2020(10):123-124.
|
[20] |
颜贵红. 酸激发水泥基材料力学及收缩性能研究[D]. 徐州:中国矿业大学, 2018.
|
[21] |
SELLAMI M, BARRE M, TOUMI M. Thermal properties and elec-trical conductivity of phosphoric acid-based geopolymer with meta-kaolin[J]. Applied Clay Science, 2019, 180.Doi: 10.1016/j.clay.2019.105192.
doi: 10.1016/j.clay.2019.105192
|
[22] |
DONG T, XIE S B, WANG J S, et al. Properties and characteriza-tion of a metakaolin phosphate acid-based geopolymer synthesized in a humid environment[J]. Journal of the Australian Ceramic Society, 2020, 56(1):175-184.
doi: 10.1007/s41779-019-00376-w
|
[23] |
WAGH A S. Chemically bonded phosphate ceramics-A novel class of geopolymers[J]. Ceramic Transactions, 2004, 165:107-116.
|
[24] |
刘乐平. 磷酸基地质聚合物的反应机理与应用研究[D]. 南宁:广西大学, 2012.
|
[25] |
GAO L, ZHENG Y X, TANG Y, et al. Effect of phosphoric acid co-ntent on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers[J]. Heliyon, 2020, 6(4).Doi: 10.1016/j.heliyon.2020.e03853.
doi: 10.1016/j.heliyon.2020.e03853
|
[26] |
ZHANG B, GUO H, YUAN P, et al. Novel acid-based geopolymer synthesized from nanosized tubular halloysite:The role of precal-cination temperature and phosphoric acid concentration[J]. Cement and Concrete Composites, 2020, 110.Doi: 10.1016/j.cemconcomp.2020.103601.
doi: 10.1016/j.cemconcomp.2020.103601
|
[27] |
庞超明, 秦鸿根, 章春梅, 等. 激发剂对掺工业废渣胶凝材料路用性能的影响[J]. 混凝土与水泥制品, 2005(3):11-13,34.
|
[28] |
林宗寿, 黄赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4):53-55,62.
|
[29] |
田秀淑, 赵子伯, 金婷艳. 激发剂对钢渣-矿粉胶凝材料力学性能的影响及机理分析[J]. 混凝土与水泥制品, 2015(4):90-92.
|
[30] |
王宁, 林燕. 三种活性激发剂对混凝土抗冲磨性能影响的试验研究[J]. 四川建材, 2018, 44(11):13-14.
|
[31] |
NIKOLOV A, NUGTEREN H, ROSTOVSKY I. Optimization of geo-polymers based on natural-zeolite clinoptilolite by calcination and use of aluminate activators[J]. Construction and Building Materials, 2020, 243.Doi: 10.1016/j.conbuildmat.2020.118257.
doi: 10.1016/j.conbuildmat.2020.118257
|
[32] |
PURDON A O. The action of alkalis on blast-furnace slag[J]. Jour-nal of the Society of Chemical Industry, 1940, 59(9):191-202.
|
[33] |
GARCIA L I, PALOMO A, FERNANDEZ J A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels.Study in the ter-nary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cement and Con-crete Research, 2011, 41(9):923-931.
|
[34] |
聂轶苗, 马鸿文, 杨静, 等. 矿物聚合材料固化过程中的聚合反应机理研究[J]. 现代地质, 2006, 20(2):340-346.
|
[35] |
VAN JAARSVELD J G S, VAN DEVENTER J S J, LORENZEN L. The potential use of geopolymeric materials to immobilise toxic metals:Part I.Theory and applications[J]. Minerals Engineering, 1997, 10(7):659-669.
doi: 10.1016/S0892-6875(97)00046-0
|
[36] |
XU H, VAN DEVENTER J S J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing, 2000, 59(3):247-266.
doi: 10.1016/S0301-7516(99)00074-5
|
[37] |
曹德光, 苏达根, 路波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征[J]. 硅酸盐学报, 2005, 33(11):1385-1389.
|
[38] |
LOUATI S, BAKLOUTI S, SAMET B. Acid based geopolymeriza-tion kinetics:Effect of clay particle size[J]. Applied Clay Science, 2016, 132:571-578.
|
[39] |
WANG Y S, DAI J G, DING Z, et al. Phosphate-based geopolymer:Formationmechanism and thermal stability[J]. Materials Letters, 2017, 190:209-212.
doi: 10.1016/j.matlet.2017.01.022
|
[40] |
LV Q F, WANG Z S, GU L Y, et al. Effect of sodium sulfate on str-ength and microstructure of alkali-activated fly ash based geopoly-mer[J]. Journal of Central South University, 2020, 27(6):1691-1702.
doi: 10.1007/s11771-020-4400-4
|