无机盐工业 ›› 2022, Vol. 54 ›› Issue (2): 21-29.doi: 10.19964/j.issn.1006-4990.2021-0266
赵元元1(),陈海峰1,刘云云1,张宏1,吴勇民2,张竞择2,汤卫平2()
收稿日期:
2021-05-19
出版日期:
2022-02-10
发布日期:
2022-03-14
作者简介:
赵元元(1996— ),男,硕士研究生,主要研究方向为盐湖提锂;E-mail: ZHAO Yuanyuan1(),CHEN Haifeng1,LIU Yunyun1,ZHANG Hong1,WU Yongmin2,ZHANG Jingze2,TANG Weiping2()
Received:
2021-05-19
Published:
2022-02-10
Online:
2022-03-14
摘要:
随着新能源电动汽车、储能产业的快速发展,确保锂资源的供给成为热点话题。锰系锂离子筛因其有对锂离子的高选择性、高吸附量、低成本等优点,在盐湖提锂方面已成为最具发展潜力的吸附剂材料之一,然而其在循环吸、脱附过程中,锰的溶损以及Jahn-Teller效应等问题会影响离子筛结构的稳定性,使吸附剂的吸附性能降低。近年来,围绕吸附性能提升,从制备方法方面进行改良的研究工作很多,可通过不同的制备方法调控锂离子筛的结构和形态。针对其存在的问题,总结了可以改善其性能的方法,包括掺杂、表面包覆以及造粒和成膜等,并在此基础上对改性锂离子筛材料在工业应用方面的发展方向进行展望,制备出高数量级循环下稳定的锂离子筛材料是未来的主要发展方向。
中图分类号:
赵元元,陈海峰,刘云云,张宏,吴勇民,张竞择,汤卫平. 锰系锂离子筛的制备与改性的研究进展[J]. 无机盐工业, 2022, 54(2): 21-29.
ZHAO Yuanyuan,CHEN Haifeng,LIU Yunyun,ZHANG Hong,WU Yongmin,ZHANG Jingze,TANG Weiping. Research progress on preparation and modification of manganese based lithium ion sieve[J]. Inorganic Chemicals Industry, 2022, 54(2): 21-29.
[1] |
MARTIN G, RENTSCH L, HÖCK M, et al. Lithium market research-global supply,future demand and price development[J]. Energy Storage Materials, 2017, 6:171-179.
doi: 10.1016/j.ensm.2016.11.004 |
[2] |
XU P, HONG J, QIAN X M, et al. Materials for lithium recovery from salt lake brine[J]. Journal of Materials Science, 2021, 56(1):16-63.
doi: 10.1007/s10853-020-05019-1 |
[3] | 韩佳欢, 乜贞, 伍倩, 等. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12):61-66. |
[4] |
LI X H, MO Y H, QING W H, et al. Membrane-based technologies for lithium recovery from water lithium resources:A review[J]. Jo-urnal of Membrane Science, 2019, 591.Doi: 10.1016/j.memsci.2019.117317.
doi: 10.1016/j.memsci.2019.117317 |
[5] | LINNEEN N, BHAVE R, WOERNER D. Purification of industrial grade lithium chloride for the recovery of high purity battery grade lithium carbonate[J]. Separation & Purification Technology, 2019, 214:168-173. |
[6] | USGS.National minerals information center:Lithium statistics and information[EB/OL]. [2021-05-19]. https://www.usgs.gov/centers/ters/nmic/lithium-statistics-and-information. |
[7] | LEE D H, RYU T, SHIN J, et al. Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material[J]. Carbon Letters, 2018, 28(1):87-95. |
[8] |
HAN G F, GU D L, LIN G, et al. Recovery of lithium from a synthetic solution using spodumene leach residue[J]. Hydrometallurgy, 2018, 177:109-115.
doi: 10.1016/j.hydromet.2018.01.004 |
[9] | HONG H J, RYU T, PARK I S, et al. Highly porous and surface-ex-panded spinel hydrogen manganese oxide(HMO)/Al2O3 composite for effective lithium(Li) recovery from seawater[J]. Chemical Engi-neering Journal, 2018, 337:455-461. |
[10] |
YE Q, LI G, DENG B, et al. Solvent extraction behavior of metal ions and selective separation Sc3+ in phosphoric acid medium using P2O4[J]. Separation and Purification Technology, 2019, 209:175-181.
doi: 10.1016/j.seppur.2018.07.033 |
[11] |
GUO X Y, HU S F, WANG C X, et al. Highly efficient separation of magnesium and lithium and high-valued utilization of magnesi-um from salt lake brine by a reaction-coupled separation technolo-gy[J]. Industrial & Engineering Chemistry Research, 2018, 57(19):6618-6626.
doi: 10.1021/acs.iecr.8b01147 |
[12] |
GUO Z Y, JI Z Y, CHEN Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with mo-novalent selective ion exchange membranes[J]. Journal of Cleaner Production, 2018, 193:338-350.
doi: 10.1016/j.jclepro.2018.05.077 |
[13] | LIU X H, ZHONG M L, CHEN X Y, et al. Separating lithium and magnesium in brine by aluminum-based materials[J]. Hydromet-allurgy, 2018, 176:73-77. |
[14] |
TIAN L, MA W, HAN M. Adsorption behavior of Li + onto nano-li-thium ion sieve from hybrid magnesium/lithium manganese oxi-de[J]. Chemical Engineering Journal, 2010, 156(1):134-140.
doi: 10.1016/j.cej.2009.10.008 |
[15] |
RYU T, SHIN J, RYU J, et al. Preparation and characterization of a cylinder-type adsorbent for the recovery of lithium from seawat-er[J]. Materials Transactions, 2013, 54(6):1029-1033.
doi: 10.2320/matertrans.M2013028 |
[16] |
CHUNG K Y, SHU D, KIM K B. Determination of the potential ran-ge responsible for the replacement of surface film on LiMn2O4[J]. Electrochimica Acta, 2004, 49(6):887-898.
doi: 10.1016/j.electacta.2003.09.041 |
[17] | 纪志永, 许长春, 袁俊生, 等. 尖晶石型锂离子筛研究进展[J]. 化工进展, 2005, 24(12):1336-1341. |
[18] |
XIAO W J, XIN C, LI S B, et al. Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry A, 2018, 6(21):9893-9898.
doi: 10.1039/C8TA01428K |
[19] |
HUNTER J C. Preparation of a new crystal form of manganese dio-xide:λ-MnO2[J]. Journal of Solid State Chemistry, 1981, 39(2):142-147.
doi: 10.1016/0022-4596(81)90323-6 |
[20] | OOI K, MIYAI Y, KATOH S, et al. Lithium-ion insertion/extraction reaction with λ-MnO2 in the aqueous phase[J]. Chemistry Letters, 1980(6):989-992. |
[21] |
SATO K, POOJARY D M, CLEARFIELD A, et al. The surface st-ructure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties[J]. Journal of Solid State Chemistry, 1997, 131(1):84-93.
doi: 10.1006/jssc.1997.7348 |
[22] |
FENG Q, MIYAI Y, KANOH H, et al. Li + extraction/insertion with spinel-type lithium manganese oxides:Characterization of redox-type and ion-exchange-type sites[J]. Langmuir, 1992, 8(7):1861-1867.
doi: 10.1021/la00043a029 |
[23] |
LIU G, ZHAO Z W, GHAHREMAN A. Novel approaches for lithium extraction from salt-lake brines:A review[J]. Hydrometallurgy, 2019, 187:81-100.
doi: 10.1016/j.hydromet.2019.05.005 |
[24] | WENG D, DUAN H Y, HOU Y C, et al. Introduction of manganese based lithium-ion sieve-a review[J]. Progress in Natural Science:Materials International, 2020, 30(2):5-18. |
[25] | WANG L, ZHANG Y, SUN W, et al. Membrane technologies for Li +/Mg2+ separation from salt-lake brines and seawater:A compre-hensive review[J]. Journal of Industrial and Engineering Chemi-stry, 2019, 81:7-23. |
[26] |
FENG Q, KANOH H, MIYAI Y, et al. Hydrothermal synjournal of lithium and sodium manganese oxides and their metal ion extrac-tion/insertion reactions[J]. Chemistry of Materials, 1995, 7(6):1226-1232.
doi: 10.1021/cm00054a024 |
[27] |
ZHANG Q H, LI S P, SUN S Y, et al. LiMn2O4 spinel direct synthe-sis and lithium ion selective adsorption[J]. Chemical Engineering Science, 2010, 65(1):169-173.
doi: 10.1016/j.ces.2009.06.045 |
[28] |
ÖZGÜR C. Preparation and characterization of LiMn2O4 ion-sieve with high Li + adsorption rate by ultrasonic spray pyrolysis[J]. Solid State Ionics, 2010, 181:1425-1428.
doi: 10.1016/j.ssi.2010.08.001 |
[29] |
SUN S Y, SONG X F, ZHANG Q H, et al. Lithium extraction/inser-tion process on cubic Li-Mn-O precursors with different Li/Mn ratio and morphology[J]. Adsorption, 2011, 17(5):881-887.
doi: 10.1007/s10450-011-9356-0 |
[30] |
JI Z Y, ZHAO M Y, ZHAO Y Y, et al. Lithium extraction process on spinel-type LiMn2O4 and characterization based on the hydroly-sis of sodium persulfate[J]. Solid State Ionics, 2017, 301:116-124.
doi: 10.1016/j.ssi.2017.01.018 |
[31] | THACKERAY M M. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications[J]. Journal of the El-ectrochemical Society, 1992, 139(2):363-366. |
[32] | TAKADA T, HAYAKAWA H, AKIBA E. Preparation and crystal structure refinement of Li4Mn5O12 by the rietveld method[J]. Jour-nal of Solid State Chemistry, 1995, 115(2):420-426. |
[33] |
TANAKA Y, ZHANG Q W, SAITO F. Synjournal of spinel Li4Mn5O12 with an aid of mechanochemical treatment[J]. Powder Technology, 2003, 132(1):74-80.
doi: 10.1016/S0032-5910(03)00009-3 |
[34] |
XIAO J L, NIE X Y, SUN S Y, et al. Lithium ion adsorption-desop-tion properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model[J]. Advanced Powder Technology, 2015, 26(2):589-594.
doi: 10.1016/j.apt.2015.01.008 |
[35] |
LIU D F, SUN S Y, YU J G, et al. Li4Mn5O12 desorption process with acetic acid and Mn dissolution mechanism[J]. Journal of Chemical Engineering of Japan, 2019, 52(3):274-279.
doi: 10.1252/jcej.18we209 |
[36] |
GAO A L, HOU X J, SUN Z H, et al. Lithium-desorption mechanism in LiMn2O4,Li1.33Mn1.67O4,and Li1.6Mn1.6O4 according to precisely controlled acid treatment and density functional theory calculations[J]. Journal of Materials Chemistry A, 2019, 7(36):20878-20890.
doi: 10.1039/C9TA06080D |
[37] |
CHITRAKAR R, KANOH H, MIYAI Y, et al. ChemInform abstract:A new type of manganese oxide(MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties[J]. Chemistry of Materials, 2000, 12:3151-3157.
doi: 10.1021/cm0000191 |
[38] |
CHITRAKAR R, KANOH H, MIYAI Y, et al. Recovery of lithium from seawater using manganese oxide adsorbent(H1.6Mn1.6O4) de-rived from Li1.6Mn1.6O4[J]. Industrial & Engineering Chemistry Research, 2001, 40(9):2054-2058.
doi: 10.1021/ie000911h |
[39] |
SHI X C, ZHOU D F, ZHANG Z B, et al. Synjournal and properties of Li1.6Mn1.6O4 and its adsorption application[J]. Hydrometallurgy, 2011, 110(1/2/3/4):99-106.
doi: 10.1016/j.hydromet.2011.09.004 |
[40] | 符雨尧, 杨喜云, 黄海强, 等. 工艺参数对o-LiMnO2相纯度及Li1.6Mn1.6O4合成的影响及作用(英文)[J]. 无机化学学报, 2020, 36(3):154-164. |
[41] |
LI X L, TAO B F, JIA Q Y, et al. Preparation and adsorption per- formance of muliti-morphology H1.6Mn1.6O4 for lithium extraction[J]. Chinese Journal of Chemical Engineering, 2020, 34:68-76.
doi: 10.1016/j.cjche.2020.09.006 |
[42] |
CHEN L F, XU X, SONG J J, et al. Microwave assisted hydrother- mal synjournal of MnO2·0.5H2O ion-sieve for lithium ion selective adsorption[J]. Separation Science and Technology, 2016, 51(5):874-882.
doi: 10.1080/01496395.2015.1117100 |
[43] |
QIAN F R, ZHAO B, GUO M, et al. Trace doping by fluoride and sulfur to enhance adsorption capacity of manganese oxides for lithium recovery[J]. Materials & Design, 2020, 194.Doi: 10.1016/j.matdes.2020.108867.
doi: 10.1016/j.matdes.2020.108867 |
[44] | 王亮, 张欣, 马来波, 等. 锰氧化物锂离子筛阳离子掺杂改性研究进展[J]. 盐科学与化工, 2018, 47(4):8-11. |
[45] |
CHEN M M, WU R Y, JU S G, et al. Improved performance of Al-doped LiMn2O4 ion-sieves for Li + adsorption[J]. Microporous and Mesoporous Materials, 2018, 261:29-34.
doi: 10.1016/j.micromeso.2017.10.058 |
[46] | 许乃才, 黎四霞, 曹佳佳, 等. 锰氧化物锂离子筛的掺杂改性及吸附性能研究[J]. 无机盐工业, 2020, 52(4):37-41. |
[47] |
ZHANG G T, ZHANG J Z, ZHOU Y, et al. Synjournal of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorp-tion performance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 583.Doi: 10.1016/j.colsurfa.2019.123950.
doi: 10.1016/j.colsurfa.2019.123950 |
[48] | 纪志永, 孙步云, 袁俊生, 等. 锰基锂离子筛前体及其掺杂和表面修饰进展[J]. 材料导报, 2016, 30(13):17-22. |
[49] |
CHITRAKAR R, MAKITA Y, OOI K, et al. Magnesium-doped man-ganese oxide with lithium ion-sieve property:Lithium adsorption from salt lake brine[J]. Bulletin of the Chemical Society of Japan, 2013, 86(7):850-855.
doi: 10.1246/bcsj.20130019 |
[50] | 钱方仁, 郭敏, 赵炳, 等. Mg2+掺杂对H1.6Mn1.6O4锂离子筛吸附性能的影响[J]. 盐湖研究, 2020, 28(2):1-14. |
[51] |
CAO G F, YANG X Y, YIN Z L, et al. Synjournal,adsorption proper-ties and stability of Cr-doped lithium ion sieve in salt lake brine[J]. Bulletin of the Chemical Society of Japan, 2019, 92(7):1205-1210.
doi: 10.1246/bcsj.20190061 |
[52] |
LI J S, YANG X Y, FU Y Y, et al. Recovery of Fe,Mn,Ni and Co in sulfuric acid leaching liquor of spent lithium ion batteries for synjournal of lithium ion-sieve and NixCoyMn1-x-y(OH)2[J]. Hydro-metallurgy, 2019, 190.Doi: 10.1016/j.hydromet.2019.105190.
doi: 10.1016/j.hydromet.2019.105190 |
[53] | CHITRAKAR R, MAKITA Y, OOI K, et al. Synjournal of iron-doped manganese oxides with an ion-sieve property:Lithium adsorption from Bolivian brine[J]. Industrial & Engineering Chemistry Re-search, 2014, 53(9):3682-3688. |
[54] |
WANG S L, ZHENG S L, WANG Z M, et al. Superior lithium ad-sorption and required magnetic separation behavior of iron-doped lithium ion-sieves[J]. Chemical Engineering Journal, 2018, 332:160-168.
doi: 10.1016/j.cej.2017.09.055 |
[55] |
ZHAO Q, GAO J M, GUO Y X, et al. Facile synjournal of magneti-cally recyclable Fe-doped lithium ion sieve and its Li adsorption performance[J]. Chemistry Letters, 2018, 47:1308-1310.
doi: 10.1246/cl.180593 |
[56] |
QIAN F R, ZHAO B, GUO M, et al. Enhancing the Li + adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe,Co doped[J]. Hydrometallurgy, 2020, 193.Doi: 10.1016/j.hydromet.2020.105291.
doi: 10.1016/j.hydromet.2020.105291 |
[57] |
FENG Q, KANOH H, MIYAI Y, et al. Li + extraction/insertion reac-tions with LiZn0.5Mn1.5O4 spinel in the aqueous phase[J]. Chemistry of Materials, 1995, 7(2):379-384.
doi: 10.1021/cm00050a023 |
[58] |
QIAN F R, ZHAO B, GUO M, et al. Surface trace doping of Na en-hancing structure stability and adsorption properties of Li1.6Mn1.6O4 for Li + recovery[J]. Separation and Purification Technology, 2020, 256.Doi: 10.1016/j.seppur.2020.117583.
doi: 10.1016/j.seppur.2020.117583 |
[59] | QIAN F R, ZHAO B, GUO M, et al. K-gradient doping to stabilize spinel structure of Li1.6Mn1.6O4 for Li + recovery[J]. Dalton Transac-tions, 2020, 49:10939-10948. |
[60] | OHASHI F, TAI Y. Lithium adsorption from natural brine using surface-modified manganese oxide adsorbents[J]. Materials Lette-rs, 2019, 251:214-217. |
[61] | 王豪, 杨喜云, 尹周澜, 等. 包覆ZrO2锂离子筛的制备及其在盐湖卤水中的吸附性能[J]. 无机化学学报, 2017, 33(10):1775-1781. |
[62] | 杨喜云, 曹改芳, 胡长军, 等. 锂离子筛的TiO2包覆改性研究[J]. 材料导报:纳米与新材料专辑, 2017, 31(1):435-438. |
[63] |
NISHIHAMA S, ONISHI K, YOSHIZUKA K. Selective recovery process of lithium from seawater using integrated ion exchange methods[J]. Solvent Extraction and Ion Exchange, 2011, 29(3):421-431.
doi: 10.1080/07366299.2011.573435 |
[64] | XIAO G P, XIAO J L, SUN S Y, et al. Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve[J]. Indu-strial & Engineering Chemistry Research, 2012, 51:10921-10929. |
[65] | NISOLA G M, LIMJUCOA L A, VIVAS E L, et al. Macroporous fl- exible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryodesiccation[J]. Chemical Engin-eering Journal, 2015, 280:536-548. |
[66] |
PARK M J, NISOLA G M, VIVAS E L, et al. Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li + recovery from seawater[J]. Journal of Membrane Science, 2016, 510:141-154.
doi: 10.1016/j.memsci.2016.02.062 |
[67] |
JIA Q Y, WANG J, GUO R L. Preparation and characterization of porous HMO/PAN composite adsorbent and its adsorption-desorp-tion properties in brine[J]. Journal of Porous Materials, 2019, 26(3):705-716.
doi: 10.1007/s10934-018-0662-8 |
[68] | CHUNG W J, TORREJOS R E C, PARK M J, et al. Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves[J]. Che- mical Engineering Journal, 2017, 309:49-62. |
[69] |
ZHU G R, WANG P, QI P F, et al. Adsorption and desorption pro-perties of Li + on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane[J]. Chemical Engineering Journal, 2014, 235:340-348.
doi: 10.1016/j.cej.2013.09.068 |
[70] | QI G C, HAI C X, ZHOU Y. Synjournal of PVDF-H1.6Mn1.6O4 lithi- um ion-sieve membrane for lithium extraction[J]. Journal of Syn-thetic Crystals, 2019, 48(3):418-427. |
[71] |
QIU Z W, WANG M Y, CHEN Y, et al. Li4Mn5O12 doped cellulose acetate membrane with low Mn loss and high stability for enhancing lithium extraction from seawater[J]. Desalination, 2021, 506.Doi: 10.1016/j.desal.2021.115003.
doi: 10.1016/j.desal.2021.115003 |
[72] |
SUN D S, ZHU Y Z, MENG M J, et al. Fabrication of highly selec-tive ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion[J]. Separation and Purification Technology, 2017, 175:19-26.
doi: 10.1016/j.seppur.2016.11.029 |
[73] | LAI X R, YUAN Y J, CHEN Z Q, et al. Adsorption-desorption pro-perties of granular EP/HMO composite and its application in lithi-um recovery from brine[J]. Industrial & Engineering Chemistry Re-search, 2020, 59(16):7913-7925. |
[74] | ZHAO X Y, JIAO Y X, XUE P J, et al. Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inor-ganic-gel framework electrode[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12):4827-4837. |
[75] | MA L W, CHEN B Z, CHEN Y, et al. Preparation,characterization and adsorptive properties of foam-type lithium adsorbent[J]. Mi-croporous & Mesoporous Materials, 2011, 142(1):147-153. |
[76] |
HAN Y, KIM H, PARK J. Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater[J]. Chemical Engineering Journal, 2012, 210:482-489.
doi: 10.1016/j.cej.2012.09.019 |
[77] |
MU Y X, ZHANG C Y, ZHANG W, et al. Electrochemical lithium recovery from brine with high Mg2+/Li + ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes[J]. Desalination, 2021, 511.Doi: 10.1016/j.desal.2021.115112.
doi: 10.1016/j.desal.2021.115112 |
[78] |
LIMJUCO L A, NISOLA G M, LAWAGON C P, et al. H2TiO3 com-posite adsorbent foam for efficient and continuous recovery of Li + from liquid resources[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 504:267-279.
doi: 10.1016/j.colsurfa.2016.05.072 |
[1] | 杨恩, 申红艳, 刘有智. 硅聚醚原位改性超细氢氧化镁的制备[J]. 无机盐工业, 2024, 56(4): 42-49. |
[2] | 陈凤, 冯康, 李铭, 沈豪杰, 田承涛, 唐远, 李智力, 何东升. 有机改性硫酸钙晶须在沥青改性中的应用[J]. 无机盐工业, 2024, 56(3): 125-130. |
[3] | 李巧云, 黄修行, 韦文业, 陈振. 活性炭协同酸/碱改性粉煤灰对亚甲基蓝的吸附研究[J]. 无机盐工业, 2024, 56(3): 131-136. |
[4] | 赵闯, 陈自浩, 张博宇, 李犇, 靳凤英, 李滨, 孙振海, 郭春垒. 分子筛吸附剂对不同类型柴油吸附分离性能的研究[J]. 无机盐工业, 2024, 56(3): 80-85. |
[5] | 李阳, 娄飞健, 隋鑫, 李克艳, 刘飞, 郭新闻. 氨基功能化气相二氧化硅材料的制备及其吸附二氧化碳性能研究[J]. 无机盐工业, 2024, 56(2): 38-43. |
[6] | 金声势, 刘凯杰, 刘秋文, 张一波, 杨向光. 磷酸改性CeO2纳米棒负载Pt催化剂催化丙烷燃烧性能的研究[J]. 无机盐工业, 2024, 56(1): 141-148. |
[7] | 李阳, 臧毅华, 袁标, 盛春光. 抗污染陶瓷膜改性及其在处理含油污水中的应用[J]. 无机盐工业, 2023, 55(9): 33-42. |
[8] | 王梦迪, 罗瑾, 吴巍, 周靖辉, 王静, 孙彦民, 于海斌. 微反应法制备γ-Al2O3及其对甲基橙的吸附性能研究[J]. 无机盐工业, 2023, 55(9): 66-74. |
[9] | 周世奇, 王涛, 敬方梨, 罗仕忠. 硝酸镁改性碳分子筛分离氮气/甲烷的性能研究[J]. 无机盐工业, 2023, 55(9): 75-80. |
[10] | 张文静, 周立山, 杨文博, 周柄男, 韩恩山, 何艳贞. 有机蒙脱石复合降凝剂的制备与防蜡降凝作用机理研究[J]. 无机盐工业, 2023, 55(9): 81-87. |
[11] | 付煜, 邓觅, 黄冬根, 万金保. 盐湖卤水提锂技术研究进展[J]. 无机盐工业, 2023, 55(9): 9-16. |
[12] | 桂昌青, 王雅静, 凌长见, 王怀有, 唐忠锋. 氧化镁基二氧化碳吸附剂的制备及改性研究进展[J]. 无机盐工业, 2023, 55(8): 77-83. |
[13] | 韩红静, 张竞择, 拉毛卓玛, 韩吉者, 吴勇民, 汤卫平. 铝钴共掺杂锂锰氧化物的制备及吸附提锂性能[J]. 无机盐工业, 2023, 55(7): 38-44. |
[14] | 范方方, 仝仲凯, 左卫元. 钙改性花生壳生物炭对废水中四环素的吸附研究[J]. 无机盐工业, 2023, 55(6): 109-115. |
[15] | 袁恩先, 李金鹏, 李倩, 周美霞, 菅盘铭. 镁掺杂四氧化三钴催化环己烷氧化初步研究[J]. 无机盐工业, 2023, 55(6): 136-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|