无机盐工业 ›› 2024, Vol. 56 ›› Issue (11): 105-115.doi: 10.19964/j.issn.1006-4990.2024-0445
收稿日期:
2024-08-09
出版日期:
2024-11-10
发布日期:
2024-11-27
通讯作者:
吴冲冲(1989— ),女,博士,高级工程师,主要研究方向为低碳技术开发;E-mail:wuchch6@cnooc.com.cn。作者简介:
侯章贵(1973— ),男,博士,教授级高工,主要研究方向为化学工程与工艺;E-mail:houzhg2@cnooc.com.cn。
基金资助:
HOU Zhanggui(), WU Chongchong(
), ZHANG Siran
Received:
2024-08-09
Published:
2024-11-10
Online:
2024-11-27
摘要:
逆水煤气变换(RWGS)反应,通过催化二氧化碳与氢气的反应,成为生成甲醇、低碳烯烃、芳烃、汽油等高附加值化学品和燃料的关键步骤。深入剖析了RWGS反应的两大机理:氧化还原机理和中间体机理。同时,对近年来RWGS反应的研究进展进行了详细综述,对应用于该反应的催化剂进行了系统的分类、分析和总结。这些催化剂涵盖了负载型金属催化剂、氧化物催化剂(混合氧化物、尖晶石和钙钛矿)及碳化物催化剂。此外,还对RWGS的工业应用进行了分析,并对RWGS反应的发展进行了展望。RWGS可耦合石脑油脱氢芳构化技术、乙苯脱氢制备苯乙烯技术、低碳烷烃脱氢制烯烃技术、二氧化碳捕集技术及合成电子燃料技术等实现二氧化碳资源化利用。这不仅为开发制备新型RWGS反应催化剂提供了理论依据和指导,也为未来RWGS反应的应用场景提供了可行的思路和参考。
中图分类号:
侯章贵, 吴冲冲, 张斯然. 二氧化碳逆水煤气变换的研究进展[J]. 无机盐工业, 2024, 56(11): 105-115.
HOU Zhanggui, WU Chongchong, ZHANG Siran. Research progress of CO2 conversion via Reverse Water-Gas Shift reaction[J]. Inorganic Chemicals Industry, 2024, 56(11): 105-115.
表1
负载型催化剂逆水煤气变换催化性能
催化剂 | 反应 温度/℃ | n(CO2)∶ n(H2) | 空速/ [mL·(g·h)-1] | CO2转化率/% | CO选择性/% |
---|---|---|---|---|---|
Pt/CeO2[ | 450 | 1∶3 | 43 200 | 35 | 98 |
Pt/TiO2[ | 600 | 1∶3 | 12 000 | 56 | 100 |
PtW/Al2O3[ | 450 | 1∶3 | 34 200 | 42 | 78 |
Cu/CeO2[ | 500 | 1∶3 | 300 000 | 41 | 100 |
NiCo/SiO2[ | 500 | 1∶4 | 15 000 | 50 | 47 |
Ni12P5-SiO2[ | 600 | 1∶4 | 6 000 | 44.8 | 91.8 |
CuIn/ZrO2[ | 600 | 1∶4 | 3 000 | 48 | 100 |
NiMo/Al2O3[ | 600 | 1∶1 | 30 000 | 34 | |
Ni/CeO2[ | 650 | 1∶1 | 6 000 | 38 | 94 |
RuFe/CeO2[ | 800 | 1∶1 | 6 000 | 47.5 | 100 |
PtCs/TiO2[ | 500 | 1∶4 | 30 000 | 44 | 98 |
Ni/NiCeZr[ | 550 | 1∶3 | 50 000 | 48 | 87.5 |
表2
氧化物催化剂逆水煤气变换催化性能
催化剂 | 反应温度/℃ | n(CO2)∶n(H2) | 空速/[mL·(g·h)-1] | CO2转 化率/% | CO选择性/% |
---|---|---|---|---|---|
RuNi/Ce0.5Zr0.5O2[ | 700 | 1∶4 | 24 000 | 72 | 91 |
In2O3-CeO2[ | 500 | 1∶1 | 24 000 | 19.98 | 100 |
Ni/Ce-Zr-O[ | 750 | 1∶1 | 30 000 | 49.66 | 99.65 |
Ga2O3-CeO2[ | 500 | 1∶1 | 4 800 | 15 | 100 |
BaZr0.8Y0.2O3[ | 600 | 1∶1 | 2 400 | 26.7 | 93 |
BaZr0.8Y0.16Zn0.04O3[ | 600 | 1∶1 | 2 400 | 37.5 | 97 |
BaCe0.7Zr0.1Y0.16Zn0.04O3[ | 600 | 1∶1 | 2 400 | 10.8 | 74 |
CuAl2O4-α[ | 400 | 1∶3 | 9 960 | 37 | 100 |
Co3-x Al x O4[ | 500 | 1∶5 | 55 000 | 53 | 98 |
K3CuAlFe[ | 550 | 1∶1 | 1 830 | 35 | |
CeO2-CaO[ | 650 | 20 000 | 49 | 100 |
表3
碳化物催化剂逆水煤气变换催化性能
催化剂 | 反应 温度/℃ | n(CO2)∶ n(H2) | 空速/[mL·(g·h)-1] | CO2转 化率/% | CO选 择性/% |
---|---|---|---|---|---|
Cu/β-Mo2C[ | 500 | 1∶2 | 300 000 | 28.9 | 99.0 |
Cu/β-Mo2C[ | 600 | 1∶2 | 300 000 | 40.0 | 99.2 |
α-Mo2C[ | 400 | 1∶1 | 2 000 | 15.9 | 99.3 |
介孔MoC[ | 400 | 1∶4 | 12 000 | 16 | 100 |
Mo2C/Al2O3[ | 400 | 1∶3 | 3 000 | 24 | 94.5 |
Mo2C/SiO2[ | 400 | 1∶3 | 3 000 | 27.5 | 98.5 |
Mo2C/TiO2[ | 400 | 1∶3 | 3 000 | 8.5 | 97 |
Mo x C-B[ | 350 | 1∶3 | 3 000 | 18 | ~98 |
α-MoC1-x[ | 600 | 1∶4 | 36 000 | 60 | 99 |
β-Mo2C[ | 600 | 1∶4 | 36 000 | 60 | 98 |
1 | 王挺,章文文,毛庆,等.二氧化碳电还原制乙醇催化体系与材料研究进展[J].无机盐工业,2024,56(7):1-10,68. |
WANG Ting, ZHANG Wenwen, MAO Qing,et al.Research progress of catalytic system and materials for electrocatalytic reduction of carbon dioxide to ethanol[J].Inorganic Chemicals Industry,2024,56(7):1-10,68. | |
2 | WU Qing, WU Chongchong.Mechanism insights on single-atom catalysts for CO2 conversion[J].Journal of Materials Chemistry A,2023,11(10):4876-4906. |
3 | GONZÁLEZ-CASTAÑO M, DORNEANU B, ARELLANO-GARCÍA H.The reverse water gas shift reaction:A process systems engineering perspective[J].Reaction Chemistry & Engineering,2021,6(6):954-976. |
4 | WANG Huilin, BOOTHARAJU M S, KIM J H,et al.Synergistic interactions of neighboring platinum and iron atoms enhance reverse water-gas shift reaction performance[J].Journal of the American Chemical Society,2023,145(4):2264-2270. |
5 | HOU Hao, HOU Luman, YU Qiang,et al.Electroplating sludge-derived multiple-metal-doped spinel with superior CO selectivity in reverse water-gas-shift reaction[J].ACS Sustainable Chemistry & Engineering,2022,10(6):2214-2223. |
6 | KHOSHOOEI M A, WANG Xijun, VITALE G,et al.An active,stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction[J].Science,2024,384(6695):540-546. |
7 | 王晓月,张伟敏,姚正阳,等.逆水煤气变换反应研究进展[J].化工进展,2023,42(3):1583-1594. |
WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang,et al.Research progress of reverse water gas shift reaction[J].Chemical Industry and Engineering Progress,2023,42(3):1583-1594. | |
8 | PANAGIOTOPOULOU P.Hydrogenation of CO2 over supported noble metal catalysts[J].Applied Catalysis A:General,2017,542:63-70. |
9 | TRIVIÑO M L T, ARRIOLA N C, KANG Y S,et al.Transforming CO2 to valuable feedstocks:Emerging catalytic and technological advances for the reverse water gas shift reaction[J].Chemical Engineering Journal,2024,487:150369. |
10 | WANG Luhui, ZHANG Shaoxing, LIU Yuan.Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts[J].Journal of Rare Earths,2008,26(1):66-70. |
11 | CHEN Xiaodong, CHEN Ya, SONG Chunyu,et al.Recent advances in supported metal catalysts and oxide catalysts for the reverse water-gas shift reaction[J].Frontiers in Chemistry,2020,8:709. |
12 | ZHAO Zhiying, WANG Mingzhi, MA Peijie,et al.Atomically dispersed Pt/CeO2 catalyst with superior CO selectivity in reverse water gas shift reaction[J].Applied Catalysis B:Environmental,2021,291:120101. |
13 | KIM S S, PARK K H, HONG S C.A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts[J].Fuel Processing Technology,2013,108:47-54. |
14 | KOBAYASHI D, KOBAYASHI H, KUSADA K,et al.Boosting reverse water-gas shift reaction activity of Pt nanoparticles through light doping of W[J].Journal of Materials Chemistry A,2021,9(28):15613-15617. |
15 | ZHANG Yudong, LIANG Long, CHEN Ziyang,et al.Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction:Investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS[J].Applied Surface Science,2020,516:146035. |
16 | PRICE C A H, PASTOR-PEREZ L, REINA T R,et al.Yolk-Shell structured NiCo@SiO2 nanoreactor for CO2 upgrading via reverse water-gas shift reaction[J].Catalysis Today,2022,383:358-367. |
17 | HAMEED G, GOKSU A, MERKOURI L P,et al.Experimental optimization of Ni/P atomic ratio for nickel phosphide catalysts in reverse water-gas shift[J].Journal of CO2 Utilization,2023,77:102606. |
18 | LI Mo, PHAM T H MY,KO Y,et al.Support-dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction[J].ACS Sustainable Chemistry & Engineering,2022,10(4):1524-1535. |
19 | KHARAJI A G, SHARIATI A, OSTADI M.Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift(RWGS) reaction[J].Journal of Nanoscience and Nanotechnology,2014,14(9):6841-6847. |
20 | WANG Luhui, LIU Hui, LIU Yuan,et al.Influence of preparation method on performance of Ni-CeO2 catalysts for reverse water-gas shift reaction[J].Journal of Rare Earths,2013,31(6):559-564. |
21 | PANARITIS C, EDAKE M, COUILLARD M,et al.Insight towards the role of ceria-based supports for reverse water gas shift reaction over RuFe nanoparticles[J].Journal of CO2 Utilization,2018,26:350-358. |
22 | TORRES-SEMPERE G, GONZÁLEZ-ARIAS J, PENKOVA A,et al.CO2 conversion via low-temperature RWGS enabled by multicomponent catalysts:Could transition metals outperform Pt?[J].Topics in Catalysis,2024.Doi:10.1007/s11244-024-01935-7. |
23 | ZONETTI P C, LETICHEVSKY S, GASPAR A B,et al.The Ni x Ce0.75Zr0.25- x O2 solid solution and the RWGS[J].Applied Catalysis A:General,2014,475:48-54. |
24 | SHEN Haidong, DONG Yujuan, YANG Shaowei,et al.Identifying the roles of Ce3+-OH and Ce-H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst[J].Nano Research,2022,15(7):5831-5841. |
25 | GU Mengwei, DAI Sheng, QIU Runfa,et al.Structure-activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water-gas shift reaction[J].ACS Catalysis,2021,11(20):12609-12619. |
26 | DAI Hui, ZHANG Anhang, XIONG Siqi,et al.The catalytic performance of Ga2O3-CeO2 composite oxides over reverse water gas shift reaction[J].ChemCatChem,2022,14(6):e202200049. |
27 | KANG Hefei, LIU Yajie, LU Ye,et al.Exploring the sustained release catalysis of CuAl2O4 spinel for highly effective CO2 conversion to CO[J].Journal of Catalysis,2024,432:115427. |
28 | KIM D H, PARK J L, PARK E J,et al.Dopant effect of barium zirconate-based perovskite-type catalysts for the intermediate-temperature reverse water gas shift reaction[J].ACS Catalysis,2014,4(9):3117-3122. |
29 | MATSUO H, KOBAYASHI M, NANIWA S,et al.Hydrogenation of CO2 over Mn-substituted SrTiO3 based on the reverse mars-van krevelen mechanism[J].The Journal of Physical Chemistry C,2023,127(19):8946-8952. |
30 | LE SACHÉ E, PASTOR-PÉREZ L, HAYCOCK B J,et al.Switchable catalysts for chemical CO2 recycling:A step forward in the methanation and reverse water-gas shift reactions[J].ACS Sustainable Chemistry & Engineering,2020,8(11):4614-4622. |
31 | WANG Wei, ZHANG Yao, WANG Zongyuan,et al.Reverse water gas shift over In2O3-CeO2 catalysts[J].Catalysis Today,2016,259:402-408. |
32 | SUN Fengman, YAN Changfeng, WANG Zhida,et al.Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction(RWGS)[J].International Journal of Hydrogen Energy,2015,40(46):15985-15993. |
33 | SPENNATI E, GARBARINO G, RIANI P,et al.Alumina-supported cobalt catalysts in the hydrogenation of CO2 at atmospheric pressure[J].International Journal of Hydrogen Energy,2023,48(64):25006-25015. |
34 | SUN Shuzhuang, ZHANG Chen, CHEN Sining,et al.Integrated CO2 capture and reverse water-gas shift reaction over CeO2-CaO dual functional materials[J].Royal Society Open Science,2023,10(4):230067. |
35 | ORTEGA-TRIGUEROS A, CACCIA M, NARCISO J.Tuning activity and selectivity in catalyzed reactions of environmental and industrial importance with a high-surface area,mesoporous Mo2C catalyst[J].Chemistry of Materials,2022,34(14):6232-6239. |
36 | ZHANG Xiao, ZHU Xiaobing, LIN Lili,et al.Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift(RWGS) reaction[J].ACS Catalysis,2017,7(1):912-918. |
37 | LIU Xianyun, KUNKEL C,RAMÍREZ DE LA PISCINA P,et al.Effective and highly selective CO generation from CO2 using a polycrystalline α-Mo2C catalyst[J].ACS Catalysis,2017,7(7):4323-4335. |
38 | PAJARES A, LIU Xianyun, BUSACKER J R,et al.Supported nanostructured Mo x C materials for the catalytic reduction of CO2 through the reverse water gas shift reaction[J].Nanomaterials,2022,12(18):3165. |
39 | LIU Xianyun, PAJARES A, CALINAO MATIENZO D D,et al.Preparation and characterization of bulk Mo x C catalysts and their use in the reverse water-gas shift reaction[J].Catalysis Today,2020,356:384-389. |
40 | GAO Jiajian, WU Yue, JIA Chunmiao,et al.Controllable synthesis of α-MoC1- x and β-Mo2C nanowires for highly selective CO2 reduction to CO[J].Catalysis Communications,2016,84:147- 150. |
41 | ZHANG Jiajun, FENG Kai, LI Zhengwen,et al.Defect-driven efficient selective CO2 hydrogenation with Mo-based clusters[J].JACS Au,2023,3(10):2736-2748. |
42 | KUHN A N, PARK R C, YU Siying,et al.Valorization of carbon dioxide into C1 product via reverse water gas shift reaction using oxide-supported molybdenum carbides[J].Carbon Future,2024,1(2):9200011. |
43 | 彭晓伟,王银斌,臧甲忠,等.金属改性甲醇芳构化催化剂的制备及性能研究[J].无机盐工业,2021,53(9):104-108. |
PENG Xiaowei, WANG Yinbin, ZANG Jiazhong,et al.Research on preparation of metal modified catalysts and catalytic performances of methanol aromatization[J].Inorganic Chemicals Industry,2021,53(9):104-108. | |
44 | 刘永存,肖寒,王帅,等.Ni-Mo-P/Beta-ZSM-5催化剂对四氢萘加氢裂化性能的研究[J].无机盐工业,2018,50(6):81-85. |
LIU Yongcun, XIAO Han, WANG Shuai,et al.Study on hydrocracking performance of tetralin over Ni-Mo-P/Beta-ZSM-5 catalyst[J].Inorganic Chemicals Industry,2018,50(6):81-85. | |
45 | 司智伟,丹少鹏,陈树伟,等.Co-Al2O3高效催化CO2氧化乙苯脱氢制苯乙烯[J].燃料化学学报(中英文),2023,51(11):1683-1690. |
SI Zhiwei, DAN Shaopeng, CHEN Shuwei,et al.Highly efficient Co-Al2O3 catalysts for oxidative dehydrogenation of ethylbenzene to styrene with CO2 [J].Journal of Fuel Chemistry and Technology,2023,51(11):1683-1690. | |
46 | WU Jiayi, ZHENG Yuhang, FU Jiali,et al.Synthetic Ni-CaO-CeO2 dual function materials for integrated CO2 capture and conversion via reverse water-gas shift reaction[J].Separation and Purification Technology,2023,317:123916. |
[1] | 李超, 王丽萍, 高桂梅, 张云峰, 洪雨, 刘大锐, 许立军, 崔永杰. 循环流化床粉煤灰酸溶提锂过程中反应机理的研究[J]. 无机盐工业, 2025, 57(3): 101-107. |
[2] | 朱继成, 杨期鑫, 梁浩权, 王增坤, 欧阳富贵, 邸婧, 盖希坤. 限域型催化剂Ni@S2对甲烷干重整反应性能影响[J]. 无机盐工业, 2025, 57(2): 138-146. |
[3] | 王挺, 章文文, 毛庆, 吕丽, 刘长珍. 二氧化碳电还原制乙醇催化体系与材料研究进展[J]. 无机盐工业, 2024, 56(7): 1-10. |
[4] | 刘敏, 黄秀, 张理元. S型异质结光催化剂的研究进展[J]. 无机盐工业, 2024, 56(7): 18-27. |
[5] | 李江朋, 张慧斌. 三维多孔LaFeO3/CeO2/SrTiO3光芬顿和光催化协同脱色亚甲基蓝[J]. 无机盐工业, 2024, 56(5): 141-148. |
[6] | 王超, 宋国良, 肖寒. THFS-2硫化型重整预加氢催化剂的工业应用[J]. 无机盐工业, 2024, 56(5): 94-100. |
[7] | 靳苏娜, 吕瑞亮. 非均相催化臭氧氧化处理工业废水的研究进展[J]. 无机盐工业, 2024, 56(3): 28-38. |
[8] | 陈星亮, 范文娟, 常会, 黄海平, 蒋志强. Fe3+协同Ni基金属-有机框架提升电催化析氧反应活性的研究[J]. 无机盐工业, 2024, 56(2): 152-158. |
[9] | 李阳, 娄飞健, 隋鑫, 李克艳, 刘飞, 郭新闻. 氨基功能化气相二氧化硅材料的制备及其吸附二氧化碳性能研究[J]. 无机盐工业, 2024, 56(2): 38-43. |
[10] | 冯晴, 王延苏, 周微, 刘洋, 孙彦民, 南军. 接力催化CO2制备高附加值化学品中催化剂的研究进展[J]. 无机盐工业, 2024, 56(11): 81-94. |
[11] | 马以宏, 陈兴涛, 汤雷. 化学混凝-TiO2/g-C3N5光催化降解处理印刷废水[J]. 无机盐工业, 2024, 56(10): 151-158. |
[12] | 金声势, 刘凯杰, 刘秋文, 张一波, 杨向光. 磷酸改性CeO2纳米棒负载Pt催化剂催化丙烷燃烧性能的研究[J]. 无机盐工业, 2024, 56(1): 141-148. |
[13] | 胡明亮, 周微, 李滨, 赖晓玲. 协同效应催化甲烷二氧化碳重整研究进展[J]. 无机盐工业, 2024, 56(1): 23-32. |
[14] | 邓寅祥, 陈朝轶, 王仕愈, 高莹雪, 彭爽. 槽电压对CaCl2基熔盐电化学转化CO2制备碳材料的影响[J]. 无机盐工业, 2024, 56(1): 40-46. |
[15] | 章聪华, 颜文斌, 肖佳俊, 赵珂, 彭商权, 韦玉红. 响应面法优化酒石酸还原浸出电解锰阳极渣工艺[J]. 无机盐工业, 2023, 55(9): 106-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|