无机盐工业 ›› 2024, Vol. 56 ›› Issue (1): 23-32.doi: 10.19964/j.issn.1006-4990.2023-0225
收稿日期:
2023-04-21
出版日期:
2024-01-10
发布日期:
2024-01-18
作者简介:
胡明亮(1996— ),男,硕士,主要研究方向为功能材料制备及其催化应用;E-mail:huml0311@163.com。
HU Mingliang(), ZHOU Wei, LI Bin, LAI Xiaoling
Received:
2023-04-21
Published:
2024-01-10
Online:
2024-01-18
摘要:
利用化学惰性的甲烷和二氧化碳经重整反应制备合成气是一种十分有前景的策略,能够实现两种温室气体化学转化并制备高附加值化学品,具有重要的科学、环保意义和工业应用价值。然而该反应受限于反应能耗高、催化剂易烧结、积炭失活等问题,因此,开发高催化活性、高稳定性及抗积炭性能强的催化剂是实现该反应工业化应用的关键。从催化剂的基本组成出发,综述了目前国内外甲烷二氧化碳重整催化剂活性中心和载体的设计思路;重点介绍了协同效应在提升催化活性及稳定性等方面所起的关键作用;分析了通过合金化或空间结构化策略来实现协同效应的高效催化过程,并提出未来甲烷二氧化碳重整催化剂的设计和发展方向。
中图分类号:
胡明亮, 周微, 李滨, 赖晓玲. 协同效应催化甲烷二氧化碳重整研究进展[J]. 无机盐工业, 2024, 56(1): 23-32.
HU Mingliang, ZHOU Wei, LI Bin, LAI Xiaoling. Research progress of synergistic effect catalytic reforming of methane and carbon dioxide[J]. Inorganic Chemicals Industry, 2024, 56(1): 23-32.
1 | FRANCKE R, SCHILLE B, ROEMELT M.Homogeneously catalyzed electroreduction of carbon dioxide:methods,mechanisms,and catalysts[J].Chemical Reviews,2018,118(9):4631-4701. |
2 | LU Yao, KANG Li, GUO Dan,et al.Double-site doping of a V promoter on Nix -V-MgAl catalysts for the DRM reaction:Simultaneous effect on CH4 and CO2 activation[J].ACS Catalysis,2021,11(14):8749-8765. |
3 | JIANG Xiao, NIE Xiaowa, GUO Xinwen,et al.Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J].Chemical Reviews,2020,120(15):7984-8034. |
4 | FORS S A, MALAPIT C A.Homogeneous catalysis for the conversion of CO2,CO,CH3OH,and CH4 to C2+ chemicals via C—C bond formation[J].ACS Catalysis,2023,13(7):4231-4249. |
5 | FLORIAN J, COLE J M.Analyzing structure-activity variations for Mn-carbonyl complexes in the reduction of CO2 to CO[J].Inorganic Chemistry,2023,62(1):318-335. |
6 | ADAMSON T T, KELLEY S P, BERNSKOETTER W H.Iron-mediated C—C bond formation via reductive coupling with carbon dioxide[J].Organometallics,2020,39(19):3562-3571. |
7 | VICHOU E, LI Yun, GOMEZ-MINGOT M,et al.Imidazolium- and pyrrolidinium-based ionic liquids as cocatalysts for CO2 electroreduction in model molecular electrocatalysis[J].The Journal of Physical Chemistry C,2020,124(43):23764-23772. |
8 | HU Mingliang, LIU Jiahao, SONG Shaojia,et al.Ultra-thin two-dimensional trimetallic metal-organic framework for photocatalytic reduction of CO2 [J].ACS Catalysis,2022,12(5):3238-3248. |
9 | WANG Weiwei, SONG Shaojia, WANG Ping,et al.Chemical bonding of g-C3N4/UiO-66(Zr/Ce) from Zr and Ce single atoms for efficient photocatalytic reduction of CO2 under visible light[J].ACS Catalysis,2023,13(7):4597-4610. |
10 | YANG Jinman, YANG Zhengrui, YANG Kefen,et al.Indium-based ternary metal sulfide for photocatalytic CO2 reduction application[J].Chinese Journal of Catalysis,2023,44:67-95. |
11 | JIANG Yuheng, ZHAO Wenshi, LI Siyang,et al.Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering[J].Journal of the American Chemical Society,2022,144(35):15977-15987. |
12 | 黄兴,赵博宇,张昊,等.聚集辐照下甲烷水蒸气重整制氢过程参数研究[J].石油与天然气化工,2021,50(4):58-65. |
HUANG Xing, ZHAO Boyu, ZHANG Hao,et al.Parameters research for hydrogen production of methane steam reforming under concentrated radiation[J].Chemical Engineering of Oil & Gas,2021,50(4):58-65. | |
13 | YOON Y, YOU H M, KIM H J,et al.Computational catalyst design for dry reforming of methane:A review[J].Energy & Fuels,2022,36(17):9844-9865. |
14 | LIN Shiru, TRISTAN J B, WANG Yang,et al.Dry reforming of methane on doped Ni nanoparticles:Feature-assisted optimizations and ranking of doping metals for direct activations of CH4 and CO2 [J].Nano Research,2022,15(10):9670-9682. |
15 | HUANG Weiqiao, WEI Changgeng, LI Yi,et al.The role of Mo species in Ni-Mo catalysts for dry reforming of methane[J].Physical Chemistry Chemical Physics,2022,24(35):21461-21469. |
16 | GUHAROY U, REINA T R, LIU Jian,et al.A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts[J].Journal of CO2 Utilization,2021,53:101728. |
17 | MANAVI N, LIU Bin.Molecular mechanisms of methane dry reforming on Co3Mo3N catalyst with dual sites[J].Catalysis Science & Technology,2021,11(11):3724-3736. |
18 | GONZÁLEZ-CASTAÑO M, LE SACHÉ E, BERRY C,et al.Nickel phosphide catalysts as efficient systems for CO2 upgrading via dry reforming of methane[J].Catalysts,2021,11(4):446. |
19 | KULANDAIVALU T, MOHAMED A R, ALI K A,et al.Photocatalytic carbon dioxide reforming of methane as an alternative approach for solar fuel production:A review[J].Renewable and Sustainable Energy Reviews,2020,134:110363. |
20 | WANG Lei, WANG Fagen.Design strategy,synthesis,and mechanism of Ni catalysts for methane dry reforming reaction:Recent advances and future perspectives[J].Energy & Fuels,2022,36(11):5594-5621. |
21 | QI Ronghua, AN Lei, GUO Yu,et al. In situ fabrication of ultrasmall Ni nanoparticles from Ni(OH)2 precursors for efficient CO2 reforming of methane[J].Industrial & Engineering Chemistry Research,2022,61(1):198-206. |
22 | ZHANG Xiaoyu, DENG Jiang, LAN Tianwei,et al.Promoting methane dry reforming over Ni catalysts via modulating surface electronic structures of BN supports by doping carbon[J].ACS Catalysis,2022,12(22):14152-14161. |
23 | WANG Dingdi, LITTLEWOOD P, MARKS T J,et al.Coking can enhance product yields in the dry reforming of methane[J].ACS Catalysis,2022,12(14):8352-8362. |
24 | LITTLEWOOD P, WEITZ E, MARKS T J,et al.Kinetic isoconversion loop catalysis:A reactor operation mode to investigate slow catalyst deactivation processes,with Ni/Al2O3 for the dry reforming of methane[J].Industrial & Engineering Chemistry Research,2019,58(7):2481-2491. |
25 | ZHAO Ling, LUO Yicong, XIAO Junzhe,et al.Stereodivergent synthesis of allenes with α,β-adjacent central chiralities empowered by synergistic Pd/Cu catalysis[J].Angewandte Chemie International Edition,2023,62(9):e202218146. |
26 | XIAO Zeyu, SUN Panpan, QIAO Zelong,et al.Atomically dispersed Fe-Cu dual-site catalysts synergistically boosting oxygen reduction for hydrogen fuel cells[J].Chemical Engineering Journal,2022,446:137112. |
27 | GUO Yalin, HUANG Yike, ZENG Bin,et al.Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst[J].Nature Communications,2022,13:2648. |
28 | YI Jundong, GAO Xiaoping, ZHOU Huang,et al.Design of Co-Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density[J].Angewandte Chemie International Edition,2022,61(47):e202212329. |
29 | HAN Qinglin, ZHAO Ximeng, LUO Yuhong,et al.Synergistic binary Fe-Co nanocluster supported on defective tungsten oxide as efficient oxygen reduction electrocatalyst in zinc-air battery[J].Advanced Science,2022,9(4):2104237. |
30 | LI Zhenxing, HU Mingliang, LIU Jiahao,et al.Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site[J].Nano Research,2022,15(3):1983-1992. |
31 | ZHONG Dichang, GONG Yunnan, ZHANG Chao,et al.Dinuclear metal synergistic catalysis for energy conversion[J].Chemical Society Reviews,2023,52(9):3170-3214. |
32 | VAKILI R, GHOLAMI R, STERE C E,et al.Plasma-assisted catalytic dry reforming of methane(DRM) over metal-organic frameworks(MOFs)-based catalysts[J].Applied Catalysis B:Environmental,2020,260:118195. |
33 | HE Lei, LI Mingrun, LI Wencui,et al.Robust and coke-free Ni catalyst stabilized by 1~2 nm-thick multielement oxide for methane dry reforming[J].ACS Catalysis,2021,11(20):12409-12416. |
34 | AKRI M, ZHAO Shu, LI Xiaoyu,et al.Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J].Nature Communications,2019,10:5181. |
35 | CHEN Shuyue, ZAFFRAN J, YANG Bo.Dry reforming of methane over the cobalt catalyst:Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation[J].Applied Catalysis B:Environmental,2020,270:118859. |
36 | JOSÉ-ALONSO D SAN, ILLÁN-GÓMEZ M J, ROMÁN-MARTÍNEZ M C.K and Sr promoted Co alumina supported catalysts for the CO2 reforming of methane[J].Catalysis Today,2011,176(1):187-190. |
37 | 莫文龙,马凤云,郝世豪,等.介孔Al2O3的制备及其在CO2-CH4重整镍基催化剂中的应用研究[J].天然气化工(C1化学与化工),2014,39(5):16-21. |
MO Wenlong, MA Fengyun, HAO Shihao,et al.Preparation of ordered mesoporous Al2O3 and its application in Ni-based catalysts for CH4/CO2 reforming[J].Natural Gas Chemical Industry,2014,39(5):16-21. | |
38 | 张小平.制备方式对Ni-ZrO2催化剂在甲烷二氧化碳重整中催化性能的影响[J].现代化工,2020,40(1):189-193. |
ZHANG Xiaoping.Influence of preparation methods on catalytic property of Ni-ZrO2 catalyst in CO2 reforming of CH4 [J].Modern Chemical Industry,2020,40(1):189-193. | |
39 | 万吉纯,朱孔涛,翁维正,等.氨辅助浸渍法制备抗烧结Ni/SiO2催化剂及其甲烷二氧化碳重整反应的性能[J].厦门大学学报(自然科学版),2019,58(5):651-660. |
WAN Jichun, ZHU Kongtao, WENG Weizheng,et al.Preparation of sinter-resistant Ni/SiO2 catalysts using ammonia-assisted impregnation method and its performance in CO2 reforming of methane[J].Journal of Xiamen University(Natural Science),2019,58(5):651-660. | |
40 | LIANG Defang, WANG Yishuang, CHEN Mingqiang,et al.Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts[J].Applied Catalysis B:Environmental,2023,322:122088. |
41 | DENG Jiang, GAO Min, HASEGAWA J,et al.Unravelling the anomalous coking-resistance over boron nitride supported Ni catalysts for dry reforming of methane[J].CCS Chemistry,2022.Doi:10.31635/ccschem.022.202202342 . |
42 | ZHANG Xianhua, PEI Chunlei, CHANG Xin,et al.FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting[J].Journal of the American Chemical Society,2020,142(26):11540-11549. |
43 | ZHAO Tingting, ZHAO Jiankang, TAO Xuyingnan,et al.Highly active and thermostable submonolayer La(NiCo)OΔ catalyst stabilized by a perovskite LaCrO3 support[J].Communications Chemistry,2022,5:70. |
44 | FENG Chao, BI Yuxi, CHEN Chong,et al.Urea-H2O2 defect engineering of δ-MnO2 for propane photothermal oxidation:Structure-activity relationship and synergetic mechanism determination[J].Journal of Colloid and Interface Science,2023,641:48-58. |
45 | LIU Jingjing, SUN Shengnan, LIU Jiang,et al.Achieving high-efficient photoelectrocatalytic degradation of 4-chlorophenol via functional reformation of titanium-oxo clusters[J].Journal of the American Chemical Society,2023,145(11):6112-6122. |
46 | LI Zhenxing, YU Chengcheng, KANG Yikun,et al.Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction[J].National Science Review,2021,8(7):nwaa204. |
47 | LI Zhenxing, YU Chengcheng, WEN Yangyang,et al.Mesoporous hollow Cu-Ni alloy nanocage from core-shell Cu@Ni nanocube for efficient hydrogen evolution reaction[J].ACS Catalysis,2019,9(6):5084-5095. |
48 | LI Zhenxing, MA Zhengzheng, WEN Yangyang,et al.Copper nanoflower assembled by sub-2 nm rough nanowires for efficient oxygen reduction reaction:High stability and poison resistance and density functional calculations[J].ACS Applied Materials & Interfaces,2018,10(31):26233-26240. |
49 | WANG Jiyang, FU Yu, KONG Wenbo,et al.Investigation of atom-level reaction kinetics of carbon-resistant bimetallic NiCo-reforming catalysts:Combining microkinetic modeling and density functional theory[J].ACS Catalysis,2022,12(8):4382-4393. |
50 | REZAEI R, MORADI G, SHARIFNIA S.Dry reforming of methane over Ni-Cu/Al2O3 catalyst coatings in a microchannel reactor:Modeling and optimization using design of experiments[J].Energy & Fuels,2019,33(7):6689-6706. |
51 | WANG Lei, LI Dalin, KOIKE M,et al.Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas[J].Applied Catalysis A:General,2011,392(1/2):248-255. |
52 | HUANG Tao, HUANG Wei, HUANG Jian,et al.Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts[J].Fuel Processing Technology,2011,92(10):1868-1875. |
53 | LIU Wenming, LI Le, LIN Sixue,et al.Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming[J].Journal of Energy Chemistry,2022,65:34-47. |
54 | LI Haocheng, HAO Cong, TIAN Jingqing,et al.Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination[J].Chem Catalysis,2022,2(7):1748-1763. |
55 | SHOJI S, MOHD NAJIB A S BIN, YU Minwen,et al.Charge partitioning by intertwined metal-oxide nano-architectural networks for the photocatalytic dry reforming of methane[J].Chem Catalysis,2022,2(2):321-329. |
56 | TANG Yu, WEI Yuechang, WANG Ziyun,et al.Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4 [J].Journal of the American Chemical Society,2019,141(18):7283-7293. |
57 | WANG Ye, LI Li, LI Guiying,et al.Synergy of oxygen vacancies and Ni0 species to promote the stability of a Ni/ZrO2 catalyst for dry reforming of methane at low temperatures[J].ACS Catalysis,2023,13(10):6486-6496. |
58 | ZHANG Xiao, XU Yao, LIU Yang,et al.A novel Ni-MoCx Oy interfacial catalyst for syngas production via the chemical looping dry reforming of methane[J].Chem,2023,9(1):102-116. |
59 | SHOJI S, PENG Xiaobo, YAMAGUCHI A,et al.Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems[J].Nature Catalysis,2020,3(2):148-153. |
[1] | 李阳, 娄飞健, 隋鑫, 李克艳, 刘飞, 郭新闻. 氨基功能化气相二氧化硅材料的制备及其吸附二氧化碳性能研究[J]. 无机盐工业, 2024, 56(2): 38-43. |
[2] | 邓寅祥, 陈朝轶, 王仕愈, 高莹雪, 彭爽. 槽电压对CaCl2基熔盐电化学转化CO2制备碳材料的影响[J]. 无机盐工业, 2024, 56(1): 40-46. |
[3] | 赵炎, 郝雪薇, 时海南, 李佳慧, 李克艳, 郭新闻. 铜掺杂TiO2/PCN异质结光催化还原二氧化碳性能研究[J]. 无机盐工业, 2023, 55(8): 21-27. |
[4] | 宋智佳, 王岁岁, 匡勤. 空心二氧化钛掺杂铜提升光催化二氧化碳还原性能[J]. 无机盐工业, 2023, 55(8): 45-50. |
[5] | 桂昌青, 王雅静, 凌长见, 王怀有, 唐忠锋. 氧化镁基二氧化碳吸附剂的制备及改性研究进展[J]. 无机盐工业, 2023, 55(8): 77-83. |
[6] | 武讨龙, 张胜江, 刘津洋, 洪晓博, 李丽敏, 覃晓玉, 谭晓英, 周燕. 双金属有机框架材料的研究进展[J]. 无机盐工业, 2023, 55(6): 8-17. |
[7] | 许春辉, 王峰, 凌长见, 王子睿, 唐忠锋. 熔盐改性的金属氧化物捕获二氧化碳研究进展[J]. 无机盐工业, 2023, 55(5): 1-7. |
[8] | 李通, 尹宏峰. 层状硅酸镍纳米管催化剂的可控制备及其催化性能研究[J]. 无机盐工业, 2023, 55(5): 128-136. |
[9] | 王君良, 赵爱明, 敖先权, 李松鸿, 曹阳. 白酒酒糟与污水污泥共气化制氢反应特性及协同性分析[J]. 无机盐工业, 2023, 55(3): 118-125. |
[10] | 季洪峰, 李灿华, 都刚, 张永柱, 徐文珍, 李明晖. 固废源钙基碳捕集剂制备及抗烧结性研究进展[J]. 无机盐工业, 2023, 55(3): 28-35. |
[11] | 李松鸿,周松华,赵爱明,董文燕,姜春燕,曹阳,敖先权. 水/二氧化碳气氛下酒糟催化气化反应特性的研究[J]. 无机盐工业, 2023, 55(2): 132-140. |
[12] | 把余德,周世奇,敬方梨,罗仕忠. 铁离子改性碳分子筛对氮气/甲烷分离性能的研究[J]. 无机盐工业, 2023, 55(1): 144-150. |
[13] | 严硕,于海斌,陈赞. 膜法脱除天然气中二氧化碳的工艺技术发展现状[J]. 无机盐工业, 2022, 54(5): 38-46. |
[14] | 李向阳,刘紫威,李克艳,郭新闻. FeMn-MOF/CN异质结光芬顿催化剂制备及性能研究[J]. 无机盐工业, 2022, 54(12): 126-132. |
[15] | 李佳慧,王欢,李克艳,郭新闻. 钴掺杂聚合氮化碳光催化还原二氧化碳性能研究[J]. 无机盐工业, 2022, 54(11): 124-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|