无机盐工业 ›› 2024, Vol. 56 ›› Issue (11): 81-94.doi: 10.19964/j.issn.1006-4990.2024-0404
收稿日期:
2024-08-20
出版日期:
2024-11-10
发布日期:
2024-11-27
通讯作者:
周微,女,博士,研究方向为碳资源综合利用;E-mail:362200922@163.com。作者简介:
冯晴(1989— ),女,硕士,工程师,研究方向为多孔材料;E-mail:fengqing0707@126.com。
基金资助:
FENG Qing(), WANG Yansu, ZHOU Wei(
), LIU Yang, SUN Yanmin, NAN Jun
Received:
2024-08-20
Published:
2024-11-10
Online:
2024-11-27
摘要:
全球工业化快速发展导致二氧化碳(CO2)的过度排放,继而引发日益严峻的“温室”效应,利用CO2催化转化为高附加值化学品,可实现碳资源的循环利用和节能减排。随着CO2热催化转化研究的不断深入及接力催化体系的构建,研究人员在CO2接力催化制备高附加值化学品的研究中不断取得新的科研成果。总结了近期CO2制备低碳烯烃、芳烃及含氧碳氢化合物的接力催化反应中各类催化剂的结构特点、接力催化反应机理及催化性能特点,详细分析了各类金属氧化物与不同分子筛结合形成的双功能催化剂在反应中的所起的作用,讨论了双功能催化剂上影响催化性能的关键因素。并对今后接力催化反应中双功能催化剂在活性组分结构、形貌、结合方式等方面的调整措施作出展望,以期提升CO2的转化率和目标产品的选择性。
中图分类号:
冯晴, 王延苏, 周微, 刘洋, 孙彦民, 南军. 接力催化CO2制备高附加值化学品中催化剂的研究进展[J]. 无机盐工业, 2024, 56(11): 81-94.
FENG Qing, WANG Yansu, ZHOU Wei, LIU Yang, SUN Yanmin, NAN Jun. Research progress on catalysts for relay-catalysis of CO2 to prepare high value-added chemicals[J]. Inorganic Chemicals Industry, 2024, 56(11): 81-94.
表1
尖晶石结构的金属氧化物及其与SAPO-34双功能催化剂对CO2加氢反应的催化性能[26]
催化剂 | CO2转 化率/% | 选择性/% | CO选择性/% | |||||
---|---|---|---|---|---|---|---|---|
CH4 | C2=~C4= | C20~C40 | C5+ | CH3OH | DME | |||
MgAl2O4 | 0.8 | 12.0 | 13.0 | 16.0 | 9.0 | 48 | 2 | 97 |
MgGa2O4 | 7.8 | 0.9 | 0.1 | 0.0 | 0.0 | 65 | 34 | 87 |
ZnAl2O4 | 12.0 | 0.6 | 0.1 | 0.1 | 0.0 | 84 | 15 | 69 |
ZnGa2O4 | 9.8 | 0.2 | 0.0 | 0.0 | 0.0 | 98 | 0 | 68 |
MgAl2O4/SAPO-34 | 1.1 | 9.0 | 65.0 | 18.0 | 8.0 | 0 | 0 | 96 |
MgGa2O4/SAPO-34 | 8.7 | 1.9 | 65.0 | 25.0 | 8.3 | 0 | 0 | 82 |
ZnAl2O4/SAPO-34 | 15.0 | 0.7 | 87.0 | 10.0 | 2.2 | 0 | 0 | 49 |
ZnGa2O4/SAPO-34 | 13.0 | 1.0 | 86.0 | 11.0 | 2.0 | 0 | 0 | 46 |
表2
双功能催化剂催化CO2制低碳烯烃的性能参数
催化剂 | 反应温度/℃ | 反应压强/MPa | 反应空速/(mL· g-1·h-1) | CO2转化率/% | C2=~C4=选择性/% | 反应时间/h |
---|---|---|---|---|---|---|
Zn0.5Ce0.2Zr1.8O4/H-RUB-13[ | 350 | 1 | 4 800 | 10.7 | 83.4 | 30 |
In2O3-ZnZrO x /SAPO-34[ | 380 | 3 | 9 000 | 17 | 85 | 48 |
In2O3/YSZ/SAPO-34[ | 420 | 3 | 4 000 | 30.3 | 10.8 | 45 |
ZnZrO x / SAPO-34[ | 375 | 2 | 3 000 | 23.9 | 72.4 | |
Zr8Cd1O x /SAPO-18[ | 370 | 2.5 | 5 000 | 17.8 | 85.6 | 50 |
ZnZrO x / SAPO-18[ | 360 | 2 | 4 500 | 8.6 | 90.6 | 120 |
GaZrO x /SAPO-34[ | 390 | 3 | 3 000 | 26.7 | 88.8 | 100 |
ZnAl2O4/SAPO-34[ | 370 | 3 | 5 400 | 15 | 87 | |
ZnCr2O4-ZSM-22[ | 360 | 5 | 1 200 | 21.9 | 24(乙烯选择性) | 60 |
表3
不同形貌的HZSM-5与不同金属催化剂结合对CO2加氢制芳烃催化性能的影响[41]
催化剂 | CO2 转化率/% | CO 选择性/% | 加氢产物的选择性/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1~2 | C3 | C4 | C5+ | Ba | Tb | Xc | C9+ | BTX | Arod | |||
ZnZr7O(500)-片状Z5 | 17.2 | 31.4 | 14.1 | 18.1 | 14.6 | 1.3 | 0.7 | 4.9 | 41.1 | 5.1 | 46.7 | 51.8 |
ZnZr7O(500)-空心Z5 | 14.1 | 40.3 | 18.3 | 17.8 | 29.1 | 2.8 | 0.5 | 2.5 | 23.3 | 5.7 | 26.3 | 32.0 |
ZnZr7O(500)-球形Z5 | 10.8 | 61.6 | 15.4 | 13.2 | 26.6 | 3.6 | 0.7 | 2.4 | 17.0 | 21.0 | 20.1 | 41.1 |
ZnZr7O(500)-链状Z5 | 13.5 | 60.5 | 18.0 | 14.8 | 25.7 | 7.2 | 0.7 | 2.0 | 17.2 | 14.4 | 19.9 | 34.3 |
In2O3-片状Z5 | 24.9 | 43.8 | 30.6 | 16.2 | 15.2 | 6.8 | 0.6 | 1.8 | 14.8 | 14.0 | 17.2 | 31.2 |
Cu-ZnO-Al2O3-片状Z5 | 34.5 | 84.3 | 43.2 | 10.7 | 30.1 | 4.0 | 0.1 | 0.3 | 0.4 | 6.2 | 0.8 | 7.0 |
1 | The Global Carbon Budget Office.Global carbon budget 2023[R].London:Earth System Science Data,2023. |
2 | 李自琴,王康洲,高新华,等.CO2加氢制高碳α-烯烃Fe基催化剂研究进展[J].低碳化学与化工,2023,48(3):11-21. |
LI Ziqin, WANG Kangzhou, GAO Xinhua,et al.Research progress on Fe-based catalysts for CO2 hydrogenation to high carbon α-olefins[J].Low-carbon Chemistry and Chemical Engineering,2023,48(3):11-21. | |
3 | ZHANG Wei, YANG Yu, LI Yunxin,et al.Recent progress on integrated CO2 capture and electrochemical upgrading[J].Materials Today Catalysis,2023,2:100006. |
4 | SU Junjie, LIU Chang, LIU Songlin,et al.High conversion of syngas to ethene and propene on bifunctional catalysts via the tailoring of SAPO zeolite structure[J].Cell Reports Physical Science,2021,2(1):100290. |
5 | 邵斌,孙哲毅,章云,等.二氧化碳转化为合成气及高附加值产品的研究进展[J].化工进展,2022,41(3):1136-1151. |
SHAO Bin, SUN Zheyi, ZHANG Yun,et al.Recent progresses in CO2 to syngas and high value-added products[J].Chemical Industry and Engineering Progress,2022,41(3):1136-1151. | |
6 | 成康,张庆红,康金灿,等.二氧化碳直接制备高值化学品中的接力催化方法[J].中国科学:化学,2020,50(7):743-755. |
CHENG Kang, ZHANG Qinghong, KANG Jincan,et al.Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J].Scientia Sinica Chimica,2020,50(7):743-755. | |
7 | 郝金辉,施伟东.过渡金属(Mo,Fe,Co和Ni)基催化剂在电催化还原二氧化碳还原中应用[J].催化学报,2018,39(7):1157-1166. |
HAO Jinhui, SHI Weidong.Transition metal(Mo,Fe,Co,and Ni)-based catalysts for electrochemical CO2 reduction[J].Chinese Journal of Catalysis,2018,39(7):1157-1166. | |
8 | 王挺,章文文,毛庆,等.二氧化碳电还原制乙醇催化体系与材料研究进展[J].无机盐工业,2024,56(7):1-10,68. |
WANG Ting, ZHANG Wenwen, MAO Qing,et al.Research progress of catalytic system and materials for electrocatalytic reduction of carbon dioxide to ethanol[J].Inorganic Chemicals Industry,2024,56(7):1-10,68. | |
9 | 华凯敏,刘晓放,魏百银,等.过渡金属催化CO2/H2参与的羰基化研究进展[J].物理化学学报,2021,37(5):141-156. |
HUA Kaimin, LIU Xiaofang, WEI Baiyin,et al.Research progress regarding transition metal-catalyzed carbonylations with CO2/H2 [J].Acta Physico-Chimica Sinica,2021,37(5):141-156. | |
10 | JIAO Feng, LI Jinjing, PAN Xiulian,et al.Selective conversion of syngas to light olefins[J].Science,2016,351(6277):1065-1068. |
11 | LIU Xiaoliang, WANG Mengheng, ZHOU Cheng,et al.Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J].Chemical Communications,2018,54(2):140-143. |
12 | CHENG Kang, LI Yubing, KANG Jincan,et al.Selectivity control by relay catalysis in CO and CO2 hydrogenation to multicarbon compounds[J].Accounts of Chemical Research,2024,57(5):714-725. |
13 | MARTÍN N, CIRUJANO F G.Multifunctional heterogeneous catalysts for the tandem CO2 hydrogenation-Fischer Tropsch synthesis of gasoline[J].Journal of CO2 Utilization,2022,65:102176. |
14 | WANG Shunwu, WU Tijun, LIN Jun,et al.FeK on 3D graphene-zeolite tandem catalyst with high efficiency and versatility in direct CO2 conversion to aromatics[J].ACS Sustainable Chemistry & Engineering,2019,7(21):17825-17833. |
15 | ZHANG Chundong, HU Kehao, CHEN Xixi,et al.Direct hydrogenation of CO2 into valuable aromatics over K/Fe-Cu-Al @HZSM-5 tandem catalysts:Effects of zeolite surface acidity on aromatics formation[J].Fuel Processing Technology,2023,248:107824. |
16 | BURK M J, LEE J R, MARTINEZ J P.A versatile tandem catalysis procedure for the preparation of novel amino acids and peptides[J].Journal of the American Chemical Society,1994,116(23):10847-10848. |
17 | BALEMA V P, HEY-HAWKINS E.Die CuCl-katalysierte reaktion von trimethylsilyl(t-butyl)chlorphosphan mit dimethylzirconocen:Ein beispiel der tandem-katalyse[J].Zeitschrift Für Anorganische und Allgemeine Chemie,1996,622(12):2053- 2056. |
18 | 李永恒,吴冲冲,王文波,等.CO2催化制备高附加值多碳含氧化合物的研究进展[J].燃料化学学报(中英文),2024,52(4):496-511. |
LI Yongheng, WU Chongchong, WANG Wenbo,et al.Research progress on CO2 catalytic conversion to value-added oxygenates[J].Journal of Fuel Chemistry and Technology,2024,52(4):496-511. | |
19 | 王晓星,段永鸿,张俊峰,等.串联催化剂上CO2催化转化制备高附加值烃类研究进展[J].燃料化学学报,2022,50(5):538-563. |
WANG Xiaoxing, DUAN Yonghong, ZHANG Junfeng,et al.Catalytic conversion of CO2 into high value-added hydrocarbons over tandem catalyst[J].Journal of Fuel Chemistry and Technology,2022,50(5):538-563. | |
20 | PODROJKOVÁ N, SANS V, ORIŇAK A,et al.Recent developments in the modelling of heterogeneous catalysts for CO2 conversion to chemicals[J].ChemCatChem,2020,12(7):1802-1825. |
21 | SHARMA P, SEBASTIAN J, GHOSH S,et al.Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts[J].Catalysis Science & Technology,2021,11(5):1665-1697. |
22 | CHIU H H, YU B Y.Synthesis of green light olefins from direct hydrogenation of CO2.PartⅡ:Detailed process design and optimization[J].Journal of the Taiwan Institute of Chemical Engineers,2024,155:105287. |
23 | BARRIOS A J, PERON D V, CHAKKINGAL A,et al.Efficient promoters and reaction paths in the CO2 hydrogenation to light olefins over zirconia-supported iron catalysts[J].ACS Catalysis,2022,12(5):3211-3225. |
24 | CHERNYAK S A, CORDA M, MARINOVA M,et al.Decisive influence of SAPO-34 zeolite on light olefin selectivity in methanol-meditated CO2 hydrogenation over metal oxide-zeolite catalysts[J].ACS Catalysis,2023,13(22):14627-14638. |
25 | LI Jian, YU Tie, MIAO Dengyun,et al.Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts[J].Catalysis Communications,2019,129:105711. |
26 | LIU Xiaoliang, WANG Mengheng, YIN Haoren,et al.Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J].ACS Catalysis,2020,10(15):8303-8314. |
27 | ZHANG Peng, MA Lixuan, MENG Fanhui,et al.Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrO x combined with SAPO-34[J].Applied Catalysis B:Environmental,2022,305:121042. |
28 | KIM S, JHAVERI C A, SASMAZ E.Impact of yttria-stabilized zirconia on direct CO2 hydrogenation to light olefins over a tandem catalyst composed of In2O3/YSZ and SAPO-34[J].Energy & Fuels,2023,37(10):7361-7371. |
29 | GAO Peng, DANG Shanshan, LI Shenggang,et al.Direct production of lower olefins from CO2 conversion via bifunctional cataly- sis[J].ACS Catalysis,2018,8(1):571-578. |
30 | WANG Sen, WANG Pengfei, QIN Zhangfeng,et al.Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J].Journal of Catalysis,2020,391:459-470. |
31 | WANG Sen, ZHANG Li, ZHANG Wenyu,et al.Selective conversion of CO2 into propene and butene[J].Chem,2020,6(12):3344-3363. |
32 | 杨浪浪,孟凡会,张鹏,等.ZrCdO x /SAPO-18双功能催化剂催化CO2加氢合成低碳烯烃性能[J].无机化学学报,2021,37(3):448-456. |
YANG Langlang, MENG Fanhui, ZHANG Peng,et al.Catalytic performance for CO2 hydrogenation to light olefins over ZrCdO x /SAPO-18 bifunctional catalyst[J].Chinese Journal of Inorganic Chemistry,2021,37(3):448-456. | |
33 | 陈思宇,王集杰,李灿.ZnZrO x /SAPO-18催化剂上CO2加氢制低碳烯烃[J].石油化工,2023,52(8):1031-1038. |
CHEN Siyu, WANG Jijie, LI Can.Hydrogenation of CO2 to light olefins on ZnZrO x /SAPO-18 catalyst[J].Petrochemical Technology,2023,52(8):1031-1038. | |
34 | SHI Y, GAO W, WANG G,et al.Direct conversion of CO2 to ethylene by bifunctional ZnCr2O4-ZSM-22 catalyst[J].Materials Today Chemistry,2023,32:101654. |
35 | DANG Shanshan, LI Shenggang, YANG Chengguang,et al.Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrO x /SAPO-34 bifunctional catalysts[J].ChemSusChem,2019,12(15):3582-3591. |
36 | PORTILLO A, PARRA O, EREÑA J,et al.Effect of water and methanol concentration in the feed on the deactivation of In2O3-ZrO2/SAPO-34 catalyst in the conversion of CO2/CO to olefins by hydrogenation[J].Fuel,2023,346:128298. |
37 | PORTILLO A, PARRA O, AGUAYO A T,et al.Kinetic model for the direct conversion of CO2/CO into light olefins over an In2O3-ZrO2/SAPO-34 tandem catalyst[J].ACS Sustainable Chemistry & Engineering,2024,12(4):1616-1624. |
38 | ZHANG Xinbao, ZHANG Anfeng, JIANG Xiao,et al.Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J].Journal of CO2 Utilization,2019,29:140-145. |
39 | TIAN Haifeng, JIAO Jiapeng, ZHA Fei,et al.Hydrogenation of CO2 into aromatics over ZnZrO-Zn/HZSM-5 composite catalysts derived from ZIF-8[J].Catalysis Science & Technology,2022,12(3):799-811. |
40 | WANG Yang, TAN Li, TAN Minghui,et al.Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J].ACS Catalysis,2019,9(2):895-901. |
41 | TIAN Haifeng, HE Huanhuan, JIAO Jiapeng,et al.Tandem catalysts composed of different morphology HZSM-5 and metal oxides for CO2 hydrogenation to aromatics[J].Fuel,2022,314:123119. |
42 | ZHOU Cheng, SHI Jiaqing, ZHOU Wei,et al.Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J].ACS Catalysis,2020,10(1):302-310. |
43 | ZHANG Lijun, GAO Weizhe, WANG Fan,et al.Highly selective synthesis of light aromatics from CO2 by chromium-doped ZrO2 aerogels in tandem with HZSM-5@SiO2 catalyst[J].Applied Catalysis B:Environmental,2023,328:122535. |
44 | WANG Wenhang, HE Ruosong, WANG Yang,et al.Boosting methanol-mediated CO2 hydrogenation into aromatics by synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst[J].Chemistry-A European Journal,2023,29(40):2301135. |
45 | HE Yiming, MÜLLER F H, PALKOVITS R,et al.Tandem catalysis for CO2 conversion to higher alcohols:A review[J].Applied Catalysis B:Environment and Energy,2024,345:123663. |
46 | 张广宇,赵健,孙峰,等.CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J].化工进展,2022,41(S1):177-189. |
ZHANG Guangyu, ZHAO Jian, SUN Feng,et al.Recent advances on catalytic conversion of CO2 into propylene carbonate:Catalyst design,performance and reaction mechanism[J].Chemical Industry and Engineering Progress,2022,41(S1):177-189. | |
47 | 朱有财,丁欣欣,孙莉,等.CO2/C2H4耦合制备丙烯酸及其衍生物的研究进展[J].有机化学,2022,42(4):965-977. |
ZHU Youcai, DING Xinxin, SUN Li,et al.Advances in the production of acrylic acid and its derivatives by CO2/C2H4 coupling[J].Chinese Journal of Organic Chemistry,2022,42(4):965-977. | |
48 | 金湘元,张礼兵,孙晓甫,等.单原子催化剂在电催化还原CO2领域的应用[J].高等学校化学学报,2022,43(5):5-24. |
JIN Xiangyuan, ZHANG Libing, SUN Xiaofu,et al.Electrocatalytic CO2 reduction over single-atom catalysts[J].Chemical Journal of Chinese Universities,2022,43(5):5-24. | |
49 | ZHANG Fuyong, ZHOU Wei, XIONG Xuewei,et al.Selective hydrogenation of CO2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1[J].The Journal of Physical Chemistry C,2021,125(44):24429-24439. |
50 | WANG Guishuo, LUO Ran, YANG Chengsheng,et al.Active sites in CO2 hydrogenation over confined VO x -Rh catalysts[J].Science China Chemistry,2019,62(12):1710-1719. |
51 | DING Liping, SHI Taotao, GU Jing,et al.CO2 hydrogenation to ethanol over Cu@Na-beta[J].Chem,2020,6(10):2673-2689. |
52 | FAN Linhui, WANG Yuezhao, ZHAI Xiaohan,et al.Production of oxygenates from CH4/CO2 plasma reaction assisted by Ni/HZSM-5 catalyst[J].Plasma Chemistry and Plasma Processing,2023,43(6):1979-1998. |
53 | XIE Zhenhua, XU Yuanguo, XIE Meng,et al.Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates[J].Nature Communications,2020,11:1887. |
54 | XIE Zhenhua, GUO Haoyue, HUANG Erwei,et al.Catalytic tandem CO2-ethane reactions and hydroformylation for C3 oxygenate production[J].ACS Catalysis,2022,12(14):8279-8290. |
55 | BISWAS A N, XIE Zhenhua, XIA Rong,et al.Tandem electrocatalytic-thermocatalytic reaction scheme for CO2 conversion to C3 oxygenates[J].ACS Energy Letters,2022,7(9):2904-2910. |
56 | BISWAS A N, WINTER L R, LOENDERS B,et al.Oxygenate production from plasma-activated reaction of CO2 and ethane[J].ACS Energy Letters,2022,7(1):236-241. |
[1] | 刘新龙, 杨振宇, 郝赫, 刘姝昕, 武晨阳, 王兴利, 马清清. 粉煤灰提铝残渣制备体型化4A分子筛的研究[J]. 无机盐工业, 2025, 57(3): 78-85. |
[2] | 郭颖君, 吴松松, 丁春艳, 赵世凯, 宋涛, 温广武. 锶长石微晶玻璃转晶制备SSZ-13分子筛膜[J]. 无机盐工业, 2025, 57(2): 76-82. |
[3] | 范景新, 李滨, 洪鲁伟, 洪美花, 龚鑫. 芳烃重整油脱烯烃剂研究现状及展望[J]. 无机盐工业, 2025, 57(2): 14-25. |
[4] | 柳黄飞, 张莉, 刘涛. 分子筛快速合成技术研究进展[J]. 无机盐工业, 2025, 57(2): 36-43. |
[5] | 王健捷, 束小龙, 肖霞, 王鹏, 范晓强, 孔莲, 解则安, 赵震. 多级孔花状ZSM-5分子筛的合成及其正辛烷催化裂解反应性能研究[J]. 无机盐工业, 2024, 56(8): 139-146. |
[6] | 王挺, 章文文, 毛庆, 吕丽, 刘长珍. 二氧化碳电还原制乙醇催化体系与材料研究进展[J]. 无机盐工业, 2024, 56(7): 1-10. |
[7] | 刘敏, 黄秀, 张理元. S型异质结光催化剂的研究进展[J]. 无机盐工业, 2024, 56(7): 18-27. |
[8] | 张力巾, 吕晴, 陈晓浪, 李清欣, 史鸿钰, 秦军. Ca基LDO复合材料的制备及其对磷酸盐的吸附性能研究[J]. 无机盐工业, 2024, 56(7): 37-45. |
[9] | 祝增虎, 王敏, 彭正军, 贾国凤, 李燕. 氯化锂溶液中钾离子的吸附分离研究[J]. 无机盐工业, 2024, 56(6): 61-66. |
[10] | 李永恒, 米晓彤, 张培培. 全结晶纳米ZSM-5分子筛团聚体的合成及在甲苯甲基化中的应用[J]. 无机盐工业, 2024, 56(5): 135-140. |
[11] | 谢江, 郭戈, 邱洁. 负载型活性炭粒子三维电极法处理亚甲基蓝模拟废水[J]. 无机盐工业, 2024, 56(5): 78-86. |
[12] | 狄璐, 王卫国, 陈珏先, 吴传淑. 过渡金属负载Silicalite-1分子筛的制备及其催化糠醛加氢性能研究[J]. 无机盐工业, 2024, 56(4): 125-132. |
[13] | 占思进, 刘仕轲, 刘飞, 姚梦琴, 曹建新. ZnO-CeO2制备及催化性能研究[J]. 无机盐工业, 2024, 56(3): 137-143. |
[14] | 赵闯, 陈自浩, 张博宇, 李犇, 靳凤英, 李滨, 孙振海, 郭春垒. 分子筛吸附剂对不同类型柴油吸附分离性能的研究[J]. 无机盐工业, 2024, 56(3): 80-85. |
[15] | 李阳, 娄飞健, 隋鑫, 李克艳, 刘飞, 郭新闻. 氨基功能化气相二氧化硅材料的制备及其吸附二氧化碳性能研究[J]. 无机盐工业, 2024, 56(2): 38-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|