1 |
CHEN Sai, CHANG Xin, SUN Guodong,et al.Propane dehydrogenation:Catalyst development,new chemistry,and emerging technologies[J].Chemical Society Reviews,2021,50(5):3315-3354.
|
2 |
XU Zhikang, XU Rui, YUE Yuanyuan,et al.Bimetallic Pt-Sn nanocluster from the hydrogenolysis of a well-defined surface compound consisting of [(AlO)Pt(COD)Me] and [(AlO)SnPh3] fragments for propane dehydrogenation[J].Journal of Catalysis,2019,374:391-400.
|
3 |
SHI Lei, DENG Gaoming, LI Wencui,et al.Al2O3 nanosheets rich in pentacoordinate Al(3+) ions stabilize Pt-Sn clusters for propane dehydrogenation[J].Angewandte Chemie,2015,54(47):13994-13998.
|
4 |
SUN Qiming, WANG Ning, FAN Qiyuan,et al.Frontispiece:Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J].Angewandte Chemie International Edition,2020,59(44):e202084461.
|
5 |
DENG Lidan, SHISHIDO T, TERAMURA K,et al.Effect of reduction method on the activity of Pt-Sn/SiO2 for dehydrogenation of propane[J].Catalysis Today,2014,232:33-39.
|
6 |
QU Ziqiang, SUN Qiming.Advances in zeolite-supported metal cat-alysts for propane dehydrogenation[J].Inorganic Chemistry Frontiers,2022,9(13):3095-3115.
|
7 |
ZHANG Bofeng, SONG Mingxia, XU Mingrui,et al.Recent advances in metal-zeolite catalysts for direct propane dehydrogenation[J].Energy & Fuels,2023,37(24):19419-19432.
|
8 |
SUN Qiming, WANG Ning, YU Jihong.Advances in catalytic applications of zeolite-supported metal catalysts[J].Advanced Materials,2021,33(51):e2104442.
|
9 |
WANG Yansu, HU Zhongpan, LV Xianwei,et al.Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation[J].Journal of Catalysis,2020,385:61-69.
|
10 |
解则安,吕聪敏,初晓,等.微孔分子筛限域Pt基丙烷脱氢催化剂制备的研究进展[J].沈阳师范大学学报(自然科学版),2022,40(2):115-120.
|
|
XIE Zean, Congmin LÜ, CHU Xiao,et al.Synthesis research progress of microporous molecular zeolites confined Pt-based catalysts for direct dehydrogenation of propane[J].Journal of Shenyang Normal University(Natural Science Edition),2022, 40(2):115-120.
|
11 |
LIU Meng, MIAO Caixia, WU Zhijie.Recent advances in the synthesis,characterization,and catalytic consequence of metal species confined within zeolite for hydrogen-related reactions[J].Industrial Chemistry & Materials,2024,2(1):57-84.
|
12 |
ZHANG Qiang, GAO Shiqin, YU Jihong.Metal sites in zeolites:Synthesis,characterization,and catalysis[J].Chemical Reviews,2023,123(9):6039-6106.
|
13 |
ZHANG Wei, WANG Haizhi, JIANG Jiawei,et al.Size dependence of Pt catalysts for propane dehydrogenation:From atomically dispersed to nanoparticles[J].ACS Catalysis,2020,10(21):12932-12942.
|
14 |
王延苏,刘国柱,于海斌.非贵金属催化剂用于丙烷脱氢的研究进展[J].无机盐工业,2023,55(12):1-11.
|
|
WANG Yansu, LIU Guozhu, YU Haibin.Research progress of non-precious metal catalysts for propane dehydrogenation[J].Inorganic Chemicals Industry,2023,55(12):1-11.
|
15 |
ZHU Jun, YANG Minglei, YU Yingda,et al.Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts[J].ACS Catalysis,2015,5(11):6310-6319.
|
16 |
WANG Ning, SUN Qiming, BAI Risheng,et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation[J].Journal of the American Chemical Society,2016,138(24):7484-7487.
|
17 |
MOLINER M, GABAY J E, KLIEWER C E,et al.Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite[J].Journal of the American Chemical Society,2016,138(48):15743-15750.
|
18 |
ZHANG Jian, WANG Liang, SHAO Yi,et al.A Pd@Zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores[J].Angewandte Chemie,2017,56(33):9747-9751.
|
19 |
LI Shiwen, BUREL L, AQUINO C,et al.Ultimate size control of encapsulated gold nanoparticles[J].Chemical Communications,2013,49(76):8507-8509.
|
20 |
LIU Lichen, DÍAZ U, ARENAL R,et al.Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J].Nature Materials,2017,16(1):132-138.
|
21 |
WANG Yansu, SUO Yujun, LV Xianwei,et al.Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation[J].Journal of Colloid and Interface Science,2021,593:304-314.
|
22 |
WEI Xueer, CHENG Jiawei, LI Yubing,et al.Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenati- on[J].Nano Research,2023,16(8):10881-10889.
|
23 |
ZHU Jie, OSUGA R, ISHIKAWA R,et al.Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization:Catalytic application for propane dehydrogenation[J].Angewandte Chemie,2020,59(44):19669-19674.
|
24 |
RYOO R, KIM J,JO C,et al.Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis[J].Nature,2020, 585(7824):221-224.
|
25 |
LIU Lichen, LOPEZ-HARO M, LOPES C W,et al.Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J].Nature Materials,2019,18(8):866-873.
|
26 |
QI Liang, BABUCCI M, ZHANG Yanfei,et al.Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn-OH nests in dealuminated zeolite beta[J].Journal of the American Chemical Society,2021,143(50):21364-21378.
|
27 |
MA Yue, SONG Shaojia, LIU Changcheng,et al.Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation[J].Nature Catalysis,2023,6:506-518.
|
28 |
ZENG Lei, CHENG Kang, SUN Fanfei,et al.Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts[J].Science,2024,383(6686):998-1004.
|
29 |
HU Zhongpan, QIN Gangqiang, HAN Jingfeng,et al.Atomic insight into the local structure and microenvironment of isolated co-motifs in MFI zeolite frameworks for propane dehydrogenation[J].Journal of the American Chemical Society,2022,144(27):12127-12137.
|
30 |
QU Ziqiang, HE Guangyuan, ZHANG Tianjun,et al.Tricoordinated single-atom cobalt in zeolite boosting propane dehydrogenation[J].Journal of the American Chemical Society,2024, 146(13):8939-8948.
|
31 |
XIE Linjun, WANG Rui, CHAI Yuchao,et al.Propane dehydrogenation catalyzed by in situ partially reduced zinc cations confined in zeolites[J].Journal of Energy Chemistry,2021,63:262-269.
|
32 |
SONG Shaojia, YANG Kun, ZHANG Peng,et al.Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenati- on[J].ACS Catalysis,2022,12(10):5997-6006.
|
33 |
CHAI Yicong, CHEN Shunhua, CHEN Yang,et al.Dual-atom catalyst with N-colligated Zn1Co1 species as dominant active sites for propane dehydrogenation[J].Journal of the American Chemical Society,2024,146(1):263-273.
|
34 |
YUE Yuanyuan, FU Jing, WANG Chuanming,et al.Propane dehydrogenation catalyzed by single Lewis acid site in Sn-Beta zeolite[J].Journal of Catalysis,2021,395:155-167.
|
35 |
HU Bo, SCHWEITZER N M, ZHANG Guanghui,et al.Isolated FeII on silica as a selective propane dehydrogenation catalyst[J].ACS Catalysis,2015,5(6):3494-3503.
|
36 |
YUN J H, LOBO R F.Catalytic dehydrogenation of propane over iron-silicate zeolites[J].Journal of Catalysis,2014,312:263- 270.
|
37 |
XU Guangyue, ZHANG Xiang, DONG Zhuoya,et al.Ferric single-site catalyst confined in a zeolite framework for propane dehydrogenation[J].Angewandte Chemie,2023,62(44):e202305915.
|
38 |
SEARLES K, SIDDIQI G, SAFONOVA O V,et al.Silica-supported isolated gallium sites as highly active,selective and stable propane dehydrogenation catalysts[J].Chemical Science,2017,8(4):2661-2666.
|
39 |
PHADKE N M, MANSOOR E, BONDIL M,et al.Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3 [J].Journal of the American Chemical Society,2019,141(4):1614-1627.
|
40 |
NI Lingli, KHARE R, BERMEJO-DEVAL R,et al.Highly active and selective sites for propane dehydrogenation in zeolite Ga-BEA[J].Journal of the American Chemical Society,2022,144(27):12347-12356.
|
41 |
YUAN Yong, LEE J S, LOBO R F.Ga+-chabazite zeolite:A highly selective catalyst for nonoxidative propane dehydrogenati-on[J].Journal of the American Chemical Society,2022,144(33):15079-15092.
|