无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2024, Vol. 56 ›› Issue (11): 151-157.doi: 10.19964/j.issn.1006-4990.2024-0153

• 环境·健康·安全 • 上一篇    下一篇

电解锰渣对熟石灰-矿渣体系硫酸盐激发性能研究

倪栋1(), 唐亮2, 何兆益2, 王健1, 裴姗姗3, 夏磊4   

  1. 1.交通运输部公路科学研究所,公路交通环境保护技术交通运输行业重点实验室,北京 100088
    2.重庆交通大学;土木工程学院,重庆 400074
    3.匈中双语学校,布达佩斯 1158
    4.长安大学材料科学与工程学院,陕西 西安 710064
  • 收稿日期:2024-03-17 出版日期:2024-11-10 发布日期:2024-11-27
  • 作者简介:倪栋(1982— ),男,副研究员,主要研究方向为水环境与固体废物资源化利用;E-mail:d.ni@rioh.cn
  • 基金资助:
    公路交通环境保护技术交通运输行业重点实验室开放课题资助项目(2020-8805)

Study on sulfate activation performance of electrolytic manganese residue in hydrated lime-slag system

NI Dong1(), TANG Liang2, HE Zhaoyi2, WANG Jian1, PEI Shanshan3, XIA Lei4   

  1. 1.Research Institute of Highway Science,Ministry of Transport,Key Laboratory of Highway Traffic Environmental Protection Technology,Ministry of Transpor,Beijing 100088,China
    2.School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China
    3.Xiongzhong Bilingual Primary School,Budapest 1158,China
    4.School of;materials science and engineering,Chang′an university,Xi′an 710064,China
  • Received:2024-03-17 Published:2024-11-10 Online:2024-11-27

摘要:

电解锰渣(EMR)作为一种工业固体废弃物,含有大量重金属、氨氮及硫酸盐,对环境与人体健康造成巨大危害。为解决这一问题,利用EMR富含硫酸盐的特点,将其作为硫酸盐激发剂,研究了EMR对熟石灰-矿渣体系硫酸盐激发效果、水化机理、微观结构与污染物固化机理的影响。抗压强度、XRD及SEM-EDS测试研究表明,EMR对熟石灰-矿渣体系的激发效果较好,其最佳配比为:质量分数为50%的EMR、质量分数为46%的矿渣、质量分数为4%熟石灰,3、7、28 d抗压强度分别为15.55、27.44、44.52 MPa,相比未加EMR的熟石灰-矿渣体系,3、7、28 d抗压强度分别提升了1.65、1.80、1.97倍。在EMR激发下,熟石灰-矿渣体系的水化产物包括AFt(钙矾石)、C-(A)-S-H(水化硅铝酸钙),并且这些水化产物之间相互交织形成致密网络结构;而熟石灰-矿渣体系的主要水化产物是C-(A)-S-H,且其界面区域缝隙较大。EMR-熟石灰-矿渣体系水化过程中释放的OH-及形成的水化产物AFt、AFM(单硫型水化硫铝酸钙)、C-(A)-S-H能够对EMR中的重金属、氨氮进行离子置换、吸附、封裹与沉淀,最终使该体系浸出毒性满足《污水综合排放标准》(GB 8978—1996)的排放标准。

关键词: 电解锰渣, 工业固废, 硫酸盐, 水化机理, 重金属。

Abstract:

Electrolytic manganese residue(EMR),as an industrial solid waste,contains a large amount of heavy metals,ammonia nitrogen,and sulfates,posing great harm to the environment and human health.To address this issue,this study utilized the sulfate rich nature of EMR as a sulfate activator to investigate the sulfate activation effect,hydration mechanism,microstructure,and pollutant solidification mechanism of EMR in the hydrated lime-slag system.The results from compressive strength,XRD,and SEM-EDS testing showed that EMR had a positive effect on the sulfate activation of the limestone-slag system,with the optimal ratio of 50% EMR,46% slag,and 4% quicklime.The compressive strengths at 3 d,7 d,and 28 d were 15.55,27.44 and 44.52 MPa,respectively,which were 1.65,1.80 and 1.97 times higher compared to the limestone-slag system without EMR at the corresponding ages.Under EMR activation,the hydration products of the hydrated lime-slag system were AFt(ettringite) and C-(A)-S-H (calcium silicate hydrate),interwoven to form a dense network structure.Whereas the main hydration products of the hydrated lime-slag system were C-(A)-S-H with larger pores in the transition interface zone.The released OH- and the formation of hydrated products including AFt,AFM and C-(A)-S-H and

in the EMR-hydrated lime-slag system facilitated ion exchange,adsorption,encapsulation,and precipitation of heavy metals and ammonia nitrogen in EMR,ultimately meeting the leaching toxicity requirements of GB 8978—1996 emission standards.

Key words: electrolytic manganese residue, industrial solid waste, sulfate, hydration mechanism, heavy metals

中图分类号: