1 |
何德军, 舒建成, 陈梦君, 等. 电解锰渣建材资源化研究现状与展望[J]. 化工进展, 2020, 39(10):4227-4237.
doi: 10.16085/j.issn.1000-6613.2020-0030
|
|
HE Dejun, SHU Jiancheng, CHEN Mengjun, et al. Current status and future prospects of electrolytic manganese residue reused as building materials[J]. Chemical Industry and Engineering Progress, 2020, 39(10):4227-4237.
doi: 10.16085/j.issn.1000-6613.2020-0030
|
2 |
金修齐, 黄代宽, 赵书晗, 等. 电解锰渣胶凝固化研究进展及其胶结充填可行性探讨[J]. 矿物岩石地球化学通报, 2020, 39(1):97-103.
|
|
JIN Xiuqi, HUANG Daikuan, ZHAO Shuhan, et al. Research progress in cementation/solidification and possibility of consolidated backfilling of the electrolytic manganese residue[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2020, 39(1):97-103.
|
3 |
CÁNOVAS C R, MACÍAS F, PÉREZ-LÓPEZ R, et al. Valorization of wastes from the fertilizer industry:Current status and future trends[J]. Journal of Cleaner Production, 2018, 174:678-690.
doi: 10.1016/j.jclepro.2017.10.293
|
4 |
张峻, 解维闵, 董雄波, 等. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16):167-178.
|
|
ZHANG Jun, XIE Weimin, DONG Xiongbo, et al. Research progress on comprehensive utilization of phosphogypsum for materials:A review[J]. Materials Reports, 2023, 37(16):167-178.
|
5 |
WANG Jia, PENG Bing, CHAI Liyuan, et al. Preparation of electrolytic manganese residue-ground granulated blastfurnace slag cement[J]. Powder Technology, 2013, 241:12-18.
doi: 10.1016/j.powtec.2013.03.003
|
6 |
王继林, 龙广成, 董荣珍, 等. 掺电解锰渣砂浆的强度与微结构及碳排放分析[J]. 铁道科学与工程学报, 2023, 20(4):1382-1391.
|
|
WANG Jilin, LONG Guangcheng, DONG Rongzhen, et al. Analysis of strength,microstructure and carbon emission of mortar mixed with electrolytic manganese residue[J]. Journal of Railway Science and Engineering, 2023, 20(4):1382-1391.
|
7 |
胡修权, 张立, 张晋, 等. 非煅烧磷石膏基胶凝材料的改性实验[J]. 无机盐工业, 2022, 54(4):29-33.
|
|
HU Xiuquan, ZHANG Li, ZHANG Jin, et al. Modification experiment of non-calcined phosphogypsum based cementitious materials[J]. Inorganic Chemicals Industry, 2022, 54(4):29-33.
|
8 |
LAM N N. A study on super-sulfated cement using Dinh Vu phosphogypsum[J]. IOP Conference Series:Earth and Environmental Science, 2018, 143: 012016.
|
9 |
王星敏, 徐龙君, 胥江河, 等. 电解锰渣中锰的浸出条件及特征[J]. 环境工程学报, 2012, 6(10):3757-3761.
|
|
WANG Xingmin, XU Longjun, XU Jianghe, et al. Leaching conditions and characteristics of manganese from electrolytic manganese residue[J]. Chinese Journal of Environmental Engineering, 2012, 6(10):3757-3761.
|
10 |
杨洪友, 王家伟, 王海峰, 等. 某电解锰渣免烧砖的抗压抗折性能研究[J]. 非金属矿, 2019, 42(3):13-15.
|
|
YANG Hongyou, WANG Jiawei, WANG Haifeng, et al. Study on compressive and flexural properties of the baking-free brick made from an electrolytic manganese slag[J]. Non-Metallic Mines, 2019, 42(3):13-15.
|
11 |
谭明洋, 张西兴, 相利学, 等. 磷石膏作水泥缓凝剂的研究进展[J]. 无机盐工业, 2016, 48(7):4-6.
|
|
TAN Mingyang, ZHANG Xixing, XIANG Lixue, et al. Research progress of phosphorus gypsum as cement retarder[J]. Inorganic Chemicals Industry, 2016, 48(7):4-6.
|
12 |
JIANG Guanzhao, WU Aixiang, WANG Yiming, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum:Used as binder to prepare filling material[J]. Construction and Building Materials, 2018, 167:263-270.
doi: 10.1016/j.conbuildmat.2018.02.022
|
13 |
安树好. 高掺量矿渣水泥的研制及其早强激发机理的研究[D]. 唐山: 华北理工大学, 2008.
|
|
AN Shuhao. Development of high-slag cement and study on the activation mechanism of its early-strength[D]. Tangshan: North China University of Science and Technology, 2008.
|
14 |
张歆, 刘方, 朱健, 等. 基于电解锰渣-磷石膏复合胶凝材料的制备与表征[J]. 硅酸盐通报, 2021, 40(5):1610-1619.
|
|
ZHANG Xin, LIU Fang, ZHU Jian, et al. Preparation and characterization of composite cementitious material based on electrolytic manganese residue-phosphogypsum[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5):1610-1619.
|
15 |
白敏, 龙广成. 大掺量电解锰渣制备生态型低强度水泥基材料[J]. 新型建筑材料, 2023, 50(6):55-60.
|
|
BAI Min, LONG Guangcheng. Preparation of ecological cement-based materials with low strength by mixing large amount of electrolytic manganese residue[J]. New Building Materials, 2023, 50(6):55-60.
|
16 |
万惠文, 王银, 戴鹏, 等. 磷石膏/矿粉复合过硫胶凝材料的制备研究[J]. 武汉理工大学学报, 2014, 36(3):23-27.
|
|
WAN Huiwen, WANG Yin, DAI Peng, et al. Study of phosphogysum/slag compound persulfate cementitious material[J]. Journal of Wuhan University of Technology, 2014, 36(3):23-27.
|
17 |
刘冬梅, 王玮琦, 彭艳周, 等. 磷石膏—磷渣基复合胶凝材料强度和水化特性研究[J]. 金属矿山, 2022(9):230-237.
|
|
LIU Dongmei, WANG Weiqi, PENG Yanzhou, et al. Study on the strength and hydration characteristics of phosphogypsum-phosphorus slag composite cementitious material[J]. Metal Mine, 2022(9):230-237.
|
18 |
XUE Fei, WANG Teng, ZHOU Min, et al. Self-solidification/stabilisation of electrolytic manganese residue:Mechanistic insigh-ts[J]. Construction and Building Materials, 2020, 255:118971.
doi: 10.1016/j.conbuildmat.2020.118971
|
19 |
石马刚, 柯国军, 邹品玉, 等. 碱-矿渣水泥的水化,力学及干缩性能研究进展[J]. 硅酸盐通报, 2022, 41(1):162-173.
|
|
SHI Magang, KE Guojun, ZOU Pinyu, et al. Research progress of hydration,mechanical and dry shrinkage properties of alkali-activated slag cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1):162-173.
|
20 |
冯智广. 钛石膏基复合胶凝材料的性能研究与利用[D]. 杭州: 浙江大学, 2021.
|
|
FENG Zhiguang. Study and utilization of properties of titanium gypsum-based composite cementitious materials[D]. Hangzhou: Zhejiang University, 2021.
|
21 |
王智, 郭清春, 蒋小花, 等. 电解锰渣对粉煤灰火山灰活性的硫酸盐激发[J]. 非金属矿, 2011, 34(4):5-8.
|
|
WANG Zhi, GUO Qingchun, JIANG Xiaohua, et al. Sulphate activating of electrolytic manganese residue to fly ash[J]. Non-Metallic Mines, 2011, 34(4):5-8.
|