无机盐工业 ›› 2024, Vol. 56 ›› Issue (11): 30-38.doi: 10.19964/j.issn.1006-4990.2024-0151
许有(), 马路祥, 海春喜, 董生德, 许琪, 贺欣, 潘稳丞, 高亚文, 谌炬, 孙艳霞(
), 周园(
)
收稿日期:
2024-03-15
出版日期:
2024-11-10
发布日期:
2024-04-30
通讯作者:
孙艳霞(1989— ),女,博士,讲师,从事储锂、储钠关键材料的研究及废旧锂离子电池回收与再利用研究;E-mail:sunyanxia23@cdut.edu.cn。作者简介:
许有(2001— ),男,硕士研究生,研究方向为煤基硬碳负极材料的制备及改性;E-mail:xuyou@stu.cdut.edu.cn。
基金资助:
XU You(), MA Luxiang, HAI Chunxi, DONG Shengde, XU Qi, HE Xin, PAN Wencheng, GAO Yawen, CHEN Ju, SUN Yanxia(
), ZHOU Yuan(
)
Received:
2024-03-15
Published:
2024-11-10
Online:
2024-04-30
摘要:
钠离子电池在智能电网和储能领域有着广泛的应用,但由于负极材料不可逆容量大、氧化还原电位高、循环性能差等因素限制了其发展。硬碳材料,尤其是煤基硬碳负极材料,因其较大的层间距、短程碳微晶结构、低成本、丰富的资源及较低的工作电位等优势,被认为是最具潜力的钠离子电池负极材料,但其存在容量较低、循环性能差、除杂困难等问题。因此,综述了钠离子电池煤基硬碳负极材料的重要性及煤基硬碳的制备与改性方法,阐述了活化、杂原子掺杂、预氧化、复合碳和机械球磨等改性策略对其电化学性能的影响。最后,提出产业化挑战中面临的问题及相应解决方案,并展望了煤基硬碳负极材料的研究方向。
中图分类号:
许有, 马路祥, 海春喜, 董生德, 许琪, 贺欣, 潘稳丞, 高亚文, 谌炬, 孙艳霞, 周园. 钠离子电池煤基硬碳负极材料的研究进展及产业化挑战[J]. 无机盐工业, 2024, 56(11): 30-38.
XU You, MA Luxiang, HAI Chunxi, DONG Shengde, XU Qi, HE Xin, PAN Wencheng, GAO Yawen, CHEN Ju, SUN Yanxia, ZHOU Yuan. Research progress and industrialization challenge of coal-based hard carbon anode materials for sodium ion batteries[J]. Inorganic Chemicals Industry, 2024, 56(11): 30-38.
表1
不同煤基硬碳作为钠离子电池负极材料的电化学性能对比
前驱体 | 炭化 温度/℃ | 电解液 | 原始/改性 | 电流密度/(mA·g-1) | 可逆比容量/(mA·h·g-1) | 首次效率/ % | 循环次数/ 次 | 比容量 保持率/% |
---|---|---|---|---|---|---|---|---|
褐煤[ | 1 200 | 1 mol/L NaPF6 in EC/DMC | 原始 | 20 2 000 | 256 | 82 | 300 | 78 |
亚烟煤[ | 1 300 | 1 mol/L NaClO4 in EC/DMC | 原始 | 20 50 | 291 | 79.5 | 150 | 82 |
烟煤[ | 1 400 | 1 mol/L NaPF6 in EC/DMC | 原始 | 20 1 000 | 314.3 | 82.8 | 500 | 90.1 |
无烟煤[ | 1 200 | 0.8 mol/L NaPF6 in EC/DMC | 原始 | 40 | 222 | 81 | 600 | 89 |
烟煤[ | 1 300 | 1 mol/L NaClO4 in EC/DEC | 预氧化 | 20 60 | 308.4 215.5 | 82.3 | 800 | 85.1 |
无烟煤[ | 1 200 | 1 mol/L NaClO4 in EC/DMC/EMC | N掺杂 | 100 | 253 | 73 | 500 | 87 |
亚烟煤[ | 1 000 | 1 mol/L NaClO4 in PC/EC with 5%FEC | 预氧化 | 20 100 | 284.4 188.5 | 48.1 | 500 | 112.5 |
烟煤[ | 1 200 | 1 mol/L NaClO4 in PC/EC | 预氧化 | 30 500 | 246.8 121.3 | 80.9 | 200 | 69.4 |
无烟煤[ | 1 600 | 1 mol/L NaClO4 in PC/EC with 5%FEC | 机械球磨 | 30 1 500 | 382 176 | 50 | 2 000 | 80.2 |
褐煤[ | 1 200 | 1 mol/L NaClO4 in EC/DMC with 5%FEC | 复合 | 30 50 | 356 316 | 82.9 | 100 | 91.3 |
1 | FANG Hengyi, GAO Suning, REN Meng,et al.Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries[J].Angewandte Chemie,2023,62(2):e202214717. |
2 | GAN Qingmeng, QIN Ning, GU Shuai,et al.Extra sodiation sites in hard carbon for high performance sodium ion batteries[J].Small Methods,2021,5(9):e2100580. |
3 | SHANG Lei, YUAN Renlu, LIU Haiyan,et al.Precursor screening of fruit shell derived hard carbons for low-potential sodium storage:A low lignin content supports the formation of closed pores[J].Carbon,2024,223:119038. |
4 | JIN Qianzheng, WANG Kangli, LI Haomiao,et al.Tuning microstructures of hard carbon for high capacity and rate sodium stor-age[J].Chemical Engineering Journal,2021,417:128104. |
5 | UDOD I A.Sodium-graphite intercalation compound of the first stage:Two-dimensional structure and stability[J].Synthetic Metals,1997,88(2):127-131. |
6 | WANG Xiaoyan, HOU Mingxing, SHI Zhenglu,et al.Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage[J].ACS Applied Materials & Interfaces,2021,13(10):12059-12068. |
7 | LIN Xiuyi, LIU Yizhe, TAN Hong,et al.Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J].Carbon,2020,157:316-323. |
8 | GUO Shuai, CHEN Yimeng, TONG Liping,et al.Biomass hard carbon of high initial coulombic efficiency for sodium-ion batteries:Preparation and application[J].Electrochimica Acta,2022,410:140017. |
9 | SUN Fei, WANG Hua, QU Zhibin,et al.Carboxyl-dominant oxygen rich carbon for improved sodium ion storage:Synergistic enhancement of adsorption and intercalation mechanisms[J].Advanced Energy Materials,2021,11(1):2002981. |
10 | SUN Ning, GUAN Yibiao, LIU Yitao,et al.Facile synthesis of free-standing,flexible hard carbon anode for high-performance so-dium ion batteries using graphene as a multi-functional binder[J].Carbon,2018,137:475-483. |
11 | XU Ran, YI Zonglin, SONG Mingxin,et al.Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J].Carbon,2023,206:94-104. |
12 | ANJI REDDY M, HELEN M, GROß A,et al.Insight into sodium insertion and the storage mechanism in hard carbon[J].ACS Energy Letters,2018,3(12):2851-2857. |
13 | STEVENS D A, DAHN J R.High capacity anode materials for rechargeable sodium-ion batteries[J].Journal of the Electrochemical Society,2000,147(4):1271. |
14 | WANG Ke, XU Yaobin, LI Yuan,et al.Sodium storage in hard carbon with curved graphene platelets as the basic structural units[J].Journal of Materials Chemistry A,2019,7(7):3327-3335. |
15 | LU Peng, SUN Yi, XIANG Hongfa,et al.3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J].Advanced Energy Materials,2018,8(8):1702434. |
16 | SUN Ning, GUAN Zhaoruxin, LIU Yuwen,et al.Extended “adsorption-insertion” model:A new insight into the sodium storage mechanism of hard carbons[J].Advanced Energy Materials,2019,9(32):1901351. |
17 | AU H, ALPTEKIN H, JENSEN A C S,et al.A revised mechanistic model for sodium insertion in hard carbons[J].Energy & Environmental Science,2020,13(10):3469-3479. |
18 | CAI Congcong, CHEN Yongan, HU Ping,et al.Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage[J].Small,2022,18(6):e2105303. |
19 | BOMMIER C, SURTA T W, DOLGOS M,et al.New mechanistic insights on Na-ion storage in nongraphitizable carbon[J].Nano Letters,2015,15(9):5888-5892. |
20 | LI Jiaqi, PENG Chen, LI Jie,et al.Insight into sodium storage behaviors in hard carbon by ReaxFF molecular dynamics simulati- on[J].Energy & Fuels,2022,36(11):5937-5952. |
21 | LI Rui, YANG Borui, HU Anjun,et al.Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries[J].Carbon,2023,215:118489. |
22 | ZHAO Hanqing, ZHAO Dan, YE Jianqi,et al.Directional oxygen functionalization by defect in different metamorphic-grade coal-derived carbon materials for sodium storage[J].Energy & Environmental Materials,2022,5(1):313-320. |
23 | VASIREDDY S, MORREALE B, CUGINI A,et al.Clean liquid fuels from direct coal liquefaction:Chemistry,catalysis,technological status and challenges[J].Energy & Environmental Science,2011,4(2):311-345. |
24 | CHEN Xiaoyang, LIU Changyu, FANG Yongjin,et al.Understan-ding of the sodium storage mechanism in hard carbon anodes[J].Carbon Energy,2022,4(6):1133-1150. |
25 | 吴秋萍,满梦瑶,宋帅超,等.煤基硬炭在钠离子电池负极材料中的应用研究进展[J].化工矿物与加工,2024,53(6):29-36. |
WU Qiuping, MAN Mengyao, SONG Shuaichao,et al.Research progress on the application of coal based hard carbon in negative electrode materials for sodium ion batteries[J].Industrial Minerals & Processing,2024,53(6):29-36. | |
26 | CHEN Yanxuan, HAN Chenchen, ZHU Junsheng.Self-assembly design of novel tin/lignite-derived graphene-like porous carbon composite for lithium-ion battery[J].Diamond and Related Materials,2023,131:109610. |
27 | ZHONG Min, WANG Xiaopei, HUANG Ye,et al.Anthracite-derived carbon-based electrode materials for high performance lithi-um ion capacitors[J].Fuel Processing Technology,2022,228:107146. |
28 | 张利星,张熊,李晨,等.煤基碳负极材料在锂离子电池中的应用研究进展[J].石油化工高等学校学报,2022,35(6):10-18. |
ZHANG Lixing, ZHANG Xiong, LI Chen,et al.Research progress of application of coal-based carbon anode materials in lithi-um-ion batteries[J].Journal of Petrochemical Universities,2022,35(6):10-18. | |
29 | 刘肖强,李奕怀,张素娜,等.酚醛树脂制备活性炭的工艺[J].上海第二工业大学学报,2016,33(2):107-111. |
LIU Xiaoqiang, LI Yihuai, ZHANG Suna,et al.Craft research of preparing activated carbon by phenolic resin[J].Journal of Shanghai Second Polytechnic University,2016,33(2):107-111. | |
30 | ZOU Yujie, LI Hang, QIN Kaiyan,et al.Low-cost lignite-derived hard carbon for high-performance sodium-ion storage[J].Journal of Materials Science,2020,55(14):5994-6004. |
31 | WANG Jian, CUI Yongli, GU Yue,et al.Coal-based modified carbon for high performance sodium-ion battery[J].Solid State Ionics,2021,368:115701. |
32 | 张威.钠离子电池煤基碳负极材料的改性研究[D].北京:北京化工大学,2023. |
ZHANG Wei.Study on modification of coal-based carbon anode materials for sodium ion batteries[D].Beijing:Beijing University of Chemical Technology,2023. | |
33 | WANG Kunfang, SUN Fei, WANG Hua,et al.Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J].Advanced Functional Materials,2022,32(34):2203725. |
34 | DENG Limin, TANG Yakun, LIU Jingmei,et al.Phosphate-induced reaction to prepare coal-based P-doped hard carbon with a hierarchical porous structure for improved sodium-ion stor- age[J].Molecules,2023,28(13):4921. |
35 | SONG Wenjun, TANG Yakun, LIU Jingmei,et al.Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries[J].Journal of Alloys and Compounds,2023,946:169384. |
36 | 姜敏,高银红,阳尧,等.钠离子电池中硬碳负极的结构调控及研究进展[J].化工新型材料,2024,52(4):42-46. |
JIANG Min, GAO Yinhong, YANG Yao,et al.Structure control and research progress of hard carbon anodes in sodium-ion batteries[J].New Chemical Materials,2024,52(4):42-46. | |
37 | LI Zhifei, BOMMIER C, CHONG Zhisen,et al.Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom dop-ing[J].Advanced Energy Materials,2017,7(18):1602894. |
38 | SONG Zhenqi, DI Miaoxin, CHEN Suhua,et al.Three-dimensional N/O co-doped hard carbon anode enabled superior stabilities for sodium-ion batteries[J].Chemical Engineering Journal,2023,470:144237. |
39 | WANG Zhaohui, Long QIE, YUAN Lixia,et al.Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J].Carbon,2013,55:328-334. |
40 | WANG Jing, YAN Lei, LIU Binhua,et al.A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage[J].Chinese Chemical Letters,2023, 34(4):107526. |
41 | ZHANG Guifang, ZHANG Lijun, REN Qingjuan,et al.Tailoring a phenolic resin precursor by facile pre-oxidation tactics to realize a high-initial-coulombic-efficiency hard carbon anode for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2021,13(27):31650-31659. |
42 | LOU Zhuojia, WANG Hua, WU Dongyang,et al.Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage[J].Fuel,2022,310:122072. |
43 | 娄卓佳.烟煤基硬碳负极微晶调控及钠离子储运强化特性[D].哈尔滨:哈尔滨工业大学,2021. |
LOU Zhuojia.Microcrystalline control of bituminous coal-based hard carbon anode and strengthening characteristics of sodium ion storage and transportation[D].Harbin:Harbin Institute of Technology,2021. | |
44 | XIE Fei, XU Zhen, JENSEN A C S,et al.Hard-soft carbon composite anodes with synergistic sodium storage performance[J].Advanced Functional Materials,2019,29(24):1901072. |
45 | LIU Ruifeng, LI Yulong, WANG Chunlei,et al.Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries[J].Fuel Processing Technology,2018,178:35-40. |
46 | TAKACS L.The historical development of mechanochemistry[J].Chemical Society Reviews,2013,42(18):7649-7659. |
47 | ANDERSEN J, MACK J.Mechanochemistry and organic synthesis:From mystical to practical[J].Green Chemistry,2018,20(7):1435-1443. |
48 | JAMES S L, ADAMS C J, BOLM C,et al.Mechanochemistry:Opportunities for new and cleaner synthesis[J].Chemical Society Reviews,2012,41(1):413-447. |
49 | LU Haiyan, AI Fangxing, JIA Yanlong,et al.Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method[J].Small,2018,14(39):e1802694. |
50 | WANG Hua, SUN Fei, QU Zhibin,et al.Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage[J].ACS Sustainable Chemistry & Engineering,2019,7(22):18554-18565. |
51 | CHEN He, SUN Ning, ZHU Qizhen,et al.Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries[J].Advanced Science,2022,9(20):2200023. |
[1] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
[2] | 赵添婷, 朱德伦, 杨林, 周鑫磊. 锂离子电池多孔硅负极材料制备及工艺优化[J]. 无机盐工业, 2024, 56(5): 31-38. |
[3] | 刘杰, 石雪茹, 魏树兵, 曹鑫鑫. P2型层状氧化物正极的人工界面层构筑及储钠性能[J]. 无机盐工业, 2024, 56(3): 39-44. |
[4] | 周煌, 胡晓萍, 任稳, 曹鑫鑫. 硫掺杂Na3(VOPO4)2F正极材料的制备及储钠性能[J]. 无机盐工业, 2024, 56(2): 30-37. |
[5] | 王亿周, 胡晓梅, 王永详, 张维民. 镍铁锰酸钠层状氧化物的制备及性能研究[J]. 无机盐工业, 2024, 56(2): 57-64. |
[6] | 许希军, 林见烽, 罗雄伟, 赵经纬, 霍延平. NASICON型Na1+x Zr2Si x P3-x O12固态电解质及其钠金属电池研究进展[J]. 无机盐工业, 2024, 56(11): 1-14. |
[7] | 张瑞, 王正豪, 陈良, 郭孝东, 罗冬梅. 工业钛液合成钛酸钠负极及其储钠性能[J]. 无机盐工业, 2023, 55(12): 66-73. |
[8] | 彭晨熹, 刘军. 钠离子电池层状过渡金属氧化物正极材料的研究进展[J]. 无机盐工业, 2023, 55(10): 1-12. |
[9] | 刘金杭,杨志鹏,陈修栋,罗宇轩,余浪华,汪亚威,占昌朝,曹小华. 新型多孔炭的制备及其储锂性能[J]. 无机盐工业, 2022, 54(9): 85-89. |
[10] | 马存双,万延华,许永开,陈卫华. 超薄氮硫掺杂碳包覆二硫化铁的制备及储钠性能[J]. 无机盐工业, 2022, 54(6): 55-60. |
[11] | 东鹏,周英杰,侯敏杰,杨冬荣,戴永年,梁风. 钠离子电池正极材料Na3V2(PO4)3研究进展[J]. 无机盐工业, 2022, 54(5): 1-10. |
[12] | 王伟,刘伟,吴杨,杨慎慎. 锂离子电池二硫化钼基负极材料研究进展[J]. 无机盐工业, 2022, 54(10): 87-95. |
[13] | 周彬,白小洁,刘昊,廖立兵. 二维MXene材料——Ti3C2Tx在钠离子电池中的研究进展[J]. 无机盐工业, 2021, 53(8): 21-26. |
[14] | 包科杰,路凌然. 新能源汽车电池负极材料的制备与性能研究[J]. 无机盐工业, 2021, 53(3): 54-59. |
[15] | 刘洋,蔡宗英,曹卫刚,刘玉召. 锂离子电池材料钛酸锂钠的研究进展[J]. 无机盐工业, 2021, 53(10): 36-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|