[1] |
Kubota K, Kumakura S, Yoda Y, et al. Electrochemistry and solid-state chemistry of NaMeO2(Me=3 d transition metals)[J]. Advanced Energy Materials, 2018, 8(17).Doi: 10.1002/aenm.201703415.
|
[2] |
Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Elec-Electrochemical Society, 1995, 142(5):1431-1435.
|
[3] |
Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical per-formance of Ag doped Li4Ti5O12[J]. Electrochemistry Communicatio-ns, 2004, 6(11):1093-1097.
|
[4] |
Dambournet D, Belharouak I, Amine K. MLi2Ti6O14(M=Sr,Ba,2Na)lithium insertion titanate materials:A comparative study[J]. Inor-ganic Chemistry, 2010, 49(6):2822-2826.
|
[5] |
朱彦荣, 刘思远, 诸荣孙, 等. 锂离子电池 MLi2Ti6O14(M=2Na,Sr,Ba)负极材料的研究进展[J]. 化工新型材料, 2018, 46(2):35-39.
|
[6] |
Wu K, Wang D, Lin X, et al. Comparative study of Na2Li2Ti6O14 pre-pared by different methods as advanced anode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2014, 717:10-16.
|
[7] |
Torres-Martínez L M, Ibarra J, Loredo J R, et al. Phase formation and crystal structure of ternary compound Na2Li2Ti6O14[J]. Solid St-ate Sciences, 2007, 8(11):1281-1289.
|
[8] |
梁康, 任玉荣, 唐有根, 等. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9):9041-9047.
|
[9] |
Yi T F, Zhu Y R, Tao W, et al. Recent advances in the research of MLi2Ti6O14(M=2Na,Sr,Ba,Pb) anode materials for Li-ion batteri-es[J]. Journal of Power Sources, 2018, 399:26-41.
|
[10] |
Li P, Wu K, Wang P, et al. Preparation,electrochemical character-ization and in-situ kinetic observation of Na2Li2Ti6O14 as anode ma-terial for lithium ion batteries[J]. Ceramics International, 2015, 41(10):14508-14516.
|
[11] |
Shu J, Wu K, Wang P, et al. Lithiation and delithiation behavior of sodium lithium titanate anode[J]. Electrochimica Acta, 2015, 173:595-606.
|
[12] |
唐好庆, 王皓东, 朱姜涛, 等. 锂离子电池负极材料Li2Na2Ti6O14的制备及其电化学性能研究[C]//中国电子学会化学与物理电源技术分会. 第31届全国化学与物理电源学术年会, 2015.
|
[13] |
Yin S Y, Song L, Wang X Y, et al. Reversible lithium storage in Na2Li2Ti6O14 as anode for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(6):1251-1254.
|
[14] |
李震春, 邓健秋, 王仲民, 等. 锂离子电池负极材料Na2Li2Ti6O14的嵌脱锂过程动力学研究[J]. 桂林电子科技大学学报, 2012, 32(3):249-253.
|
[15] |
Zhang H, Gao X P, Li G R, et al. Electrochemical lithium storage of sodium titanate nanotubes and nanorods[J]. Electrochimica Ac-ta, 2008, 53(24):7061-7068.
|
[16] |
Zhao F, Xue P, Ge H, et al. Na-doped Li4Ti5O12 as an anode materi-al for sodium-ion battery with superior rate and cycling performan-ce[J]. Journal of The Electrochemical Society, 2016, 163(5):A690-A695.
|
[17] |
王杰. 负极材料钛酸锂的液相制备及性能研究[D]. 合肥: 合肥工业大学, 2018.
|
[18] |
Fan S S, Zhong H, Yu H T, et al. Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode ma-terial for lithium-ion battery[J]. Science China Materials, 2017, 60(5):427-437.
|
[19] |
杜敏, 宋滇, 谢玲, 等. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19):3281-3294.
|
[20] |
Yan W, Zhang X, Long N, et al. Na2Li2Ti6O14 nanowires as ultra-long cycling performance anode material for lithium ion storage[J]. Ce-ramics International, 2020, 46(10).Doi: 10.1016/j.ceramint.2020.03.022.
|
[21] |
Wang C, Xin X, Shu M, et al. Scalable synjournal of one-dimensional Na2Li2Ti6O14 nanofibers as ultrahigh rate capability anodes for lithi-um-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(3):646-653.
|
[22] |
Abbasian A R, Rahimipour M R, Hamnabard Z. Hydrothermal sy-njournal of lithium meta titanate nanocrystallites[J]. Procedia Ma-terials Science, 2015, 11:336-341.
|
[23] |
尹盛玉. 锂离子电池负极材料钛酸盐的合成及电化学性能研究[D]. 武汉: 武汉大学, 2010.
|
[24] |
高利亭, 唐致远, 张新河, 等. 熔盐辅助固相法制备尖晶石型钛酸锂[J]. 电源技术, 2015, 39(3):458-460.
|
[25] |
Yin S Y, Feng C Q, Wu S J, et al. Molten salt synjournal of sodium lithium titanium oxide anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 642:1-6.
|
[26] |
蔡枝英. 新型锂离子电池负极材料 NaLiTi3O7 的制备及其电化学性能研究[D]. 长沙: 中南大学, 2012.
|
[27] |
唐致远, 阳晓霞, 陈玉红, 等. 钛酸锂电极材料的研究进展[J]. 电源技术, 2007, 31(4):332-336.
|
[28] |
Lan H, Qian S, Wang Q, et al. Sr1-xNa2xLi2Ti6O14(0≤x≤1) as anode materials for rechargeable Li-ion batteries[J]. Ceramics Internatio-nal, 2017, 43(1):1552-1557.
|
[29] |
Wang P F, Qian S S, Yi T F, et al. Effect of sodium-site doping on enhancing the lithium storage performance of sodium lithium titanate[J]. ACS Applied Materials & Interfaces, 2016, 8(16):10302-10314.
|
[30] |
Wang P F, Li P, Yi T F, et al. Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum[J]. Journal of Power Sources, 2015, 293:33-41.
|
[31] |
Lao M, Li P, Wang P, et al. Advanced electrochemical performance of Li1.95Al0.05Na2Ti6O14 anode material for lithium ion batteries[J]. Electrochimica Acta, 2015, 176:694-704.
|
[32] |
Sun C, Li X, Wu X, et al. Improved the lithium storage capability of Na2Li2Ti6O14 by barium doping[J]. Journal of Electroanalytical Chemistry, 2017, 802:100-108.
|
[33] |
Tao W, Xu M L, Zhu Y R, et al. Structure and electrochemical per-formance of BaLi2-xNaxTi6O14(0≤x≤2) as anode materials for lithi- um-ion battery[J]. Science China Materials, 2017, 60(8):728-738.
|
[34] |
Lao M, Qian S, Yu H, et al. Enhanced electrochemical properties of Mg2+ doped Li2Na2Ti6O14 anode material for lithium-ion batteri-es[J]. Electrochimica Acta, 2016, 196:642-652.
|
[35] |
Wang P, Li P, Yi T F, et al. Enhanced lithium storage capability of sodium lithium titanate via lithium-site doping[J]. Journal of Power Sources, 2015, 297:283-294.
|
[36] |
Lao M, Lin X, Li P, et al. Preparation and electrochemical charac-terization of Li2+xNa2-xTi6O14 (0≤x≤0.2) as anode materials for li-thium-ion batteries[J]. Ceramics International, 2015, 41(2):2900-2907.
|
[37] |
袁华, 何云蔚, 艾常春. 钛酸锂作为锂离子电池负极材料的改性进展[J]. 武汉工程大学学报, 2014, 36(8):20-26.
|
[38] |
Han X, Gui X, Tao W, et al. Facile strategy to fabricate Na2Li2Ti6O14@Li0.33La0.56TiO3 composites as promising anode materials for lithium-ion battery[J]. Ceramics International, 2018, 44(11).Doi: 10.1016/j.ceramint.2018.04.013.
|
[39] |
Wu K, Shu J, Lin X, et al. Enhanced electrochemical performance of sodium lithium titanate by coating various carbons[J]. Journal of Power Sources, 2014, 272:283-290.
|
[40] |
Wu K, Lin X, Shao L, et al. Copper/carbon coated lithium sodium titanate as advanced anode material for lithium-ion batteries[J]. Journal of Power Sources, 2014, 259:177-182.
|
[41] |
Ma W W, Yu H T, Guo C F, et al. Improving the structural stability and electrochemical performance of Na2Li2Ti6O14 nanoparticles via MgF2 coating[J]. RSC Advances, 2019, 9(28).Doi: 10.1039/C9RA02392E.
|
[42] |
马薇薇. NaLiTi3O7负极材料的形貌控制、表面包覆及电化学性能[D]. 哈尔滨: 黑龙江大学, 2019.
|
[43] |
Qian S, Yu H, Yan L, et al. Ag enhanced electrochemical perfor ma-nce for Na2Li2Ti6O14 anode in rechargeable lithium-ion batteries[J]. Ceramics International, 2016, 42(6):6874-6882.
|
[44] |
Prihandoko B, Priyono S, Subhan A, et al. Variation of carbon coat-ing on Li2Na2Ti6O14 as anode material of lithium battery[J]. IOP Conference Series:Materials Science and Engineering, 2017, 202.Doi: 10.1088/1757-899X/202/1/012053.
|