无机盐工业 ›› 2023, Vol. 55 ›› Issue (10): 1-12.doi: 10.19964/j.issn.1006-4990.2023-0296
• 综述与专论 • 下一篇
收稿日期:
2023-05-30
出版日期:
2023-10-10
发布日期:
2023-10-16
通讯作者:
刘军(1982— ),男,教授,博士,研究方向为锂/钠离子电池、固态电池等储能材料及器件;E-mail:msjliu@scut.edu.cn。作者简介:
彭晨熹(2000— ),女,硕士,研究方向为钠离子电池层状氧化物正极材料;E-mail:171805106@qq.com。
基金资助:
Received:
2023-05-30
Published:
2023-10-10
Online:
2023-10-16
摘要:
层状过渡金属氧化物是目前最具潜力的钠离子电池正极材料之一,因其理论容量较高且易于合成受到了广泛关注。旨在综述钠离子电池层状过渡金属氧化物正极材料的研究进展。首先简要概述了层状过渡金属氧化物材料的结构特点及目前存在的不足,介绍了P2相和O3相层状过渡金属氧化物的钠离子配位构型及传输路径;此外,针对充放电过程中存在不可逆相变、空气敏感性高、电化学性能有待提高等问题,从组分调控、结构设计及表面包覆三类改性方法入手,总结了P2、O3相层状过渡金属氧化物近几年的改性研究成果;最后,对钠离子电池层状过渡金属氧化物正极材料的产业化发展前景及潜在研究方向进行了展望。
中图分类号:
彭晨熹, 刘军. 钠离子电池层状过渡金属氧化物正极材料的研究进展[J]. 无机盐工业, 2023, 55(10): 1-12.
PENG Chenxi, LIU Jun. Research progress of layered transition metal oxides cathode materials for sodium-ion batteries[J]. Inorganic Chemicals Industry, 2023, 55(10): 1-12.
图8
P2-Na0.4Mn0.54Co0.46O2材料的合成路线、SEM图像[49]以及Na0.8[(Ni0.5Co0.2Mn0.3)0.6(Ni0.33Mn0.67)0.4]O2的结构表征和电化学性能[50]a—P2-Na0.4Mn0.54Co0.46O2纳米片正极材料的合成路线;b、c—P2-Na0.4Mn0.54Co0.46O2不同分辨率的SEM图像;d—Na0.8[(Ni0.5Co0.2Mn0.3)0.6(Ni0.33Mn0.67)0.4]O2核壳结构示意图;e—O3/O′3相材料和O3/O′3-P2相材料的XRD谱图;f、g—50次循环后O3/O′3相和O3/O′3-P2相正极的放大扫描电镜图像;h—O3/O′3相和O3/O′3-P2相正极的倍率性能。
表3
不同改性方法的层状过渡金属氧化物的电化学性能对比[32-35,40,44-46,49,52,55,57,59-63]
改性方法 | 正极材料 | 截止电压/V | 可逆比容量/(mA∙h∙g-1) | 容量保持率/% |
---|---|---|---|---|
成分调控 | P2-Na0.67Co0.5Mn0.5O2[ | 4.2 | 147.0 (0.1C) | ~100 (1C,100 cycles) |
P2-Na0.612K0.056MnO2[ | 4.3 | 240.5 (20 mA/g) | 98.2 (50 mA/g,100 cycles) | |
Sb-Na0.67Mn0.66Ni0.33O2[ | 4.2 | 130.0 (1C) | 86.0 (0.5C,200 cycles) | |
P2-Na2/3Mn1/2Ni1/6Co1/3O2[ | 4.5 | 134.0 (70 mA/g) | 87.0 (1 A/g,300 cycles) | |
P2-Na0.6Ni0.3Mn0.7O2[ | 4.5 | 111.6 (0.1C) | 60.0 (1C,100 cycles) | |
P2-Na0.66Mn0.54Ni0.13Co0.13O2[ | 4.7 | 133.2 (0.1C) | 77.9 (1C,100 cycles) | |
P2-Na0.67Ni0.33MnO2[ | 3.57 | 143.3 (0.1C) | 84.7 (0.1C,50 cycles) | |
结构设计 | P2/P3-Na0.7Li0.06Mg0.06Ni0.22Mn0.67O2[ | 4.4 | 119.0 (0.2C) | 97.2 (0.2C,50 cycles) |
P2/O3-Na0.8Mn0.55Ni0.25Fe0.1Ti0.1O2[ | 4.3 | 153.0 (0.1C) | 80.2 (0.1C,100 cycles) | |
P2/O3-Na0.67Li0.11Fe0.36Mn0.36Ti0.17O2[ | 4.2 | 235.0 (0.1C) | 85.4 (1C,100 cycles) | |
P2-Na0.4Mn0.54Co0.46O2[ | 4.2 | 145.0 (20 mA/g) | 65.0 (20 mA/g,65 cycles) | |
O3-Na2/3Li1/6Fe1/6Co1/6Ni1/6Mn1/3O2[ | 4.5 | 172.0 (0.1C) | 63.7 (1C,300 cycles) | |
P2-Na0.76Cu0.22Fe0.30Mn0.48O2[ | 4.0 | 154.1 (0.1C) | 79.0 (2C,300 cycles) | |
表面包覆 | TiO2-NaMn0.33Fe0.33Ni0.33O2[ | 4.2 | 160.9 (0.1C) | 71.0 (1C,100 cycles) |
Na3PO4-Na(Ni0.3Fe0.4Mn0.3)O2[ | 4.0 | 122.0 (0.2C) | 75.0 (0.2C,100 cycles) | |
Na0.67Fe0.5Mn0.5O2[ | 4.2 | 192.0 (0.5C) | 36.8 (0.5C,500 cycles) | |
NTP-Na0.65Mn0.70Ni0.16Co0.14O2[ | 4.3 | 105.1 (5C) | 84.3 (5C,500 cycles) |
1 | 党荣彬,陆雅翔,容晓晖,等.钠离子电池关键材料研究及工程化探索进展[J].科学通报,2022,67(30):3546-3564. |
DANG Rongbin, LU Yaxiang, RONG Xiaohui,et al.Research progress of key materials and engineering exploration for Na-ion batteries[J].Chinese Science Bulletin,2022,67(30):3546-3564. | |
2 | 东鹏,周英杰,侯敏杰,等.钠离子电池正极材料Na3V2(PO4)3研究进展[J].无机盐工业,2022,54(5):1-10. |
DONG Peng, ZHOU Yingjie, HOU Minjie,et al.Research progress on Na3V2(PO4)3 cathode materials for sodium ion batteries[J].Inorganic Chemicals Industry,2022,54(5):1-10. | |
3 | 龙云飞,苏静,吕小艳,等.锂/钠离子电池过渡金属氟磷酸盐正极材料研究进展[J].无机盐工业,2020,52(3):28-34,38. |
LONG Yunfei, SU Jing, Xiaoyan LÜ,et al.Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries[J].Inorganic Chemicals Industry,2020,52(3):28-34,38. | |
4 | O'NEILL S.Development of lithium-ion batteries wins Nobel Prize[J].Engineering,2020,6(5):487-488. |
5 | USISKIN R, LU Yaxiang, POPOVIC J,et al.Fundamentals,status and promise of sodium-based batteries[J].Nature Reviews Materials,2021,6(11):1020-1035. |
6 | MAUGER A, JULIEN C M, GOODENOUGH J B,et al.Tribute to Michel Armand:From rocking chair-Li-ion to solid-state lithium batteries[J].Journal of the Electrochemical Society,2020,167(7):070507. |
7 | NI Qiao, BAI Ying, WU Feng,et al.Polyanion-type electrode materials for sodium-ion batteries[J].Advanced Science,2017,4(3):1600275. |
8 | TIAN Yuan, AN Yongling, WEI Chuanliang,et al.Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries[J].Advanced Energy Materials,2021,11(5):2002529. |
9 | JIN Ting, LI Huangxu, ZHU Kunjie,et al.Polyanion-type cathode materials for sodium-ion batteries[J].Chemical Society Reviews,2020,49(8):2342-2377. |
10 | GAO Yun, ZHANG Hang, LIU Xiaohao,et al.Low-cost polyanion-type sulfate cathode for sodium-ion battery[J].Advanced Energy Materials,2021,11(42):2101751. |
11 | DELMAS C, FOUASSIER C, HAGENMULLER P.Structural classification and properties of the layered oxides[J].Physica B+C,1980,99(1/2/3/4):81-85. |
12 | YABUUCHI N, KUBOTA K, DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682. |
13 | DANG Rongbin, LI Qi, CHEN Minmin,et al.CuO-coated and Cu2+-doped co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries[J].Physical Chemistry Chemical Physics,2019,21(1):314-321. |
14 | LIU Qiannan, HU Zhe, CHEN Mingzhe,et al.The cathode choice for commercialization of sodium-ion batteries:Layered transition metal oxides versus Prussian blue analogs[J].Advanced Functional Materials,2020,30(14):1909530. |
15 | 孙媛媛,李思卿,王成儒,等.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].稀有金属,2022,46(6):776- 795. |
SUN Yuanyuan, LI Siqing, WANG Chengru,et al.Research progress of layered transition metal oxide cathode materials for sodium ion batteries[J].Chinese Journal of Rare Metals,2022,46(6):776-795. | |
16 | LI Xin, WANG Yan, WU Di,et al.Jahn-Teller assisted Na diffusion for high performance Na ion batteries[J].Chemistry of Materials,2016,28(18):6575-6583. |
17 | ZHANG Xiaoyu, GUO Shaohua, LIU Pan,et al.Capturing reversible cation migration in layered structure materials for Na-ion batteries[J].Advanced Energy Materials,2019,9(20):1900189. |
18 | ZHAO Yanshuo, LIU Qi, ZHAO Xiaohan,et al.Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries:Issues,mechanism and strategies[J].Materials Today,2023,62:271-295. |
19 | ZHANG Ruiwang, YANG Sijie, LI Haobo,et al.Air sensitivity of electrode materials in Li/Na ion batteries:Issues and strategies[J].InfoMat,2022,4(6):e12305. |
20 | ZUO Wenhua, INNOCENTI A, ZARRABEITIA M,et al.Layered oxide cathodes for sodium-ion batteries:Storage mechanism,elec-trochemistry,and techno-economics[J].Accounts of Chemical Research,2023,56(3):284-296. |
21 | WANG Pengfei, YOU Ya, YIN Yaxia,et al.Layered oxide cathodes for sodium-ion batteries:Phase transition,air stability,and performance[J].Advanced Energy Materials,2018,8(8):1701912. |
22 | MOEEZ I, SUSANTO D,ALI G,et al.Effect of the interfacial protective layer on the NaFe0.5Ni0.5O2 cathode for rechargeable sodium-ion batteries[J].Journal of Materials Chemistry A,2020,8(28):13964-13970. |
23 | ZHANG Lin, WANG Chenchen, LIU Yanchen,et al.Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries[J].Chemical Engineering Journal,2021,426:130813. |
24 | BRACONNIER J J, DELMAS C, FOUASSIER C,et al.Comportement electrochimique des phases Na x CoO2 [J].Materials Research Bulletin,1980,15(12):1797-1804. |
25 | WANG Tianyi, SU Dawei, SHANMUKARAJ D,et al.Electrode materials for sodium-ion batteries:Considerations on crystal structures and sodium storage mechanisms[J].Electrochemical Energy Reviews,2018,1(2):200-237. |
26 | BAUMANN M, HÄRINGER M, SCHMIDT M,et al.Prospective sustainability screening of sodium-ion battery cathode materials[J].Advanced Energy Materials,2022,12(46):2202636. |
27 | BARPANDA P, LANDER L, NISHIMURA S I,et al.Polyanionic insertion materials for sodium-ion batteries[J].Advanced Energy Materials,2018,8(17):1703055. |
28 | HU Haolv, HE H C, XIE R K,et al.Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode[J].Nano Energy,2022,99:107390. |
29 | LI Xunlu, WANG Tian, YUAN Yifei,et al.Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries[J].Advanced Materials,2021,33(13):2008194. |
30 | XU Jialu, HAN Zhen, JIANG Kezhu,et al.Suppressing cation migration and reducing particle cracks in a layered Fe-based cathode for advanced sodium-ion batteries[J].Small,2020,16(3):1904388. |
31 | YABUUCHI N, KAJIYAMA M, IWATATE J,et al.P2-type Nax [Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J].Nature Materials,2012,11(6):512-517. |
32 | ZHU Yuanen, QI Xingguo, CHEN Xiaoqing,et al.A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries[J].Journal of Materials Chemistry A,2016,4(28):11103-11109. |
33 | WANG Chenchen, LIU Luojia, ZHAO Shuo,et al.Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery[J].Nature Communications,2021,12:2256. |
34 | WANG Qinchao, SHADIKE Z, LI Xunlu,et al.Tuning sodium occupancy sites in P2-layered cathode material for enhancing electrochemical performance[J].Advanced Energy Materials,2021,11(13):2003455. |
35 | LIU Zhengbo, SHEN Jiadong, FENG Shihui,et al.Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na+ [J].Angewandte Chemie International Edition,2021,60(38):20960-20969. |
36 | ASSAT G, TARASCON J M.Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteri- es[J].Nature Energy,2018,3(5):373-386. |
37 | 杨凤玉,董华,陈勃涛.富锂锰基正极材料反应机理研究进展[J].无机盐工业,2022,54(12):19-27. |
YANG Fengyu, DONG Hua, CHEN Botao.Research progress of reaction mechanism of lithium-rich manganese-based cathode materials[J].Inorganic Chemicals Industry,2022,54(12):19-27. | |
38 | JIN Junteng, LIU Yongchang, PANG Xuelu,et al.A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries[J].Science China Chemistry,2021,64(3):385-402. |
39 | RONG Xiaohui, HU Enyuan, LU Yaxiang,et al.Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J].Joule,2019,3(2):503-517. |
40 | CHENG Chen, DING Manling, YAN Tianran,et al.Anionic redox activities boosted by aluminum doping in layered sodium-ion battery electrode[J].Small Methods,2022,6(3):2101524. |
41 | KONAROV A, KIM H J, JO J H,et al.High-voltage oxygen-redox-based cathode for rechargeable sodium-ion batteries[J].Advan- ced Energy Materials,2020,10(24):2001111. |
42 | PEREZ A J, BATUK D, SAUBANÈRE M,et al.Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3 [J].Chemistry of Materials,2016,28(22):8278-8288. |
43 | ZHENG Wei, LIU Qiong, WANG Zhenyu,et al.Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodi-um-ion batteries[J].Energy Storage Materials,2020,28:300- 306. |
44 | ZHOU Yanan, WANG Pengfei, NIU Yubin,et al.A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J].Nano Energy,2019,55:143-150. |
45 | WANG Kai, WU Zhenguo, MELINTE G,et al.Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries[J].Journal of Materials Chemistry A,2021,9(22):13151-13160. |
46 | CHEN Cong, HUANG Weiyuan, LI Yiwei,et al.P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries[J].Nano Energy,2021,90:106504. |
47 | ZHANG Siyuan, GUO Yujie, ZHOU Yanan,et al.P3/O3 integrated layered oxide as high-power and long-life cathode toward Na-ion batteries[J].Small,2021,17(10):2007236. |
48 | KELLER M, EISENMANN T, MEIRA D,et al. In situ investigation of layered oxides with mixed structures for sodium-ion batteries[J].Small Methods,2019,3(11):1900239. |
49 | XU Xijun, JI Shaomin, GAO Ruibo,et al.Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries[J].RSC Advances,2015,5(63):51454-51460. |
50 | CHEN Cheng, HAN Zhen, CHEN Shuangqiang,et al.Core-shell layered oxide cathode for high-performance sodium-ion batteries[J].ACS Applied Materials & Interfaces,2020,12(6):7144-7152. |
51 | ZHAO Chenglong, DING Feixiang, LU Yaxiang,et al.High-entropy layered oxide cathodes for sodium-ion batteries[J].Angewandte Chemie,2020,59(1):264-269. |
52 | YAO Libing, ZOU Peichao, WANG Chunyang,et al.High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries[J].Advanced Energy Materials,2022,12(41):2201989. |
53 | YANG Dezhi, LIAO Xiaozhen, SHEN Jifu,et al.A flexible and binder-free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high-performance sodium ion batteries[J].Journal of Materials Chemistry A,2014,2(19):6723-6726. |
54 | WANG Enhui, NIU Yubin, YIN Yaxia,et al.Manipulating electrode/electrolyte interphases of sodium-ion batteries:Strategies and perspectives[J].ACS Materials Letters,2021,3(1):18- 41. |
55 | YU Yang, KONG Weijin, LI Qingyuan,et al.Understanding the multiple effects of TiO2 coating on NaMn0.33Fe0.33Ni0.33O2 cathode material for Na-ion batteries[J].ACS Applied Energy Materials,2020,3(1):933-942. |
56 | ZHUANG Yuhang, ZHAO Jing, ZHAO Yang,et al.Carbon-coated single crystal O3-NaFeO2 nanoflakes prepared via topochemical reaction for sodium-ion batteries[J].Sustainable Materials and Technologies,2021,28:e00258. |
57 | LAMB J, MANTHIRAM A.Surface-modified Na(Ni0.3Fe0.4Mn0.3)O2 cathodes with enhanced cycle life and air stability for sodium- ion batteries[J].ACS Applied Energy Materials,2021,4(10): 11735-11742. |
58 | LU Di, YAO Zhujun, ZHONG Yu,et al.Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries[J].ACS Applied Materials & Interfaces,2019,11(17):15630-15637. |
59 | MOEEZ I, SUSANTO D, CHANG W,et al.Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries[J].Chemical Engineering Journal,2021,425:130547. |
60 | ZHAO Quanqing, BUTT F K, GUO Zefeng,et al.High-voltage P2-type manganese oxide cathode induced by titanium gradient modification for sodium ion batteries[J].Chemical Engineering Journal,2021,403:126308. |
61 | WAN Guanglin, PENG Bo, ZHAO Liping,et al.Dual-strategy modification on P2-Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries[J].SusMat,2023,3(1):58-71. |
62 | SHEN Qiuyu, ZHAO Xudong, LIU Yongchang,et al.Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode[J].Advanced Science,2020,7(21):2002199. |
63 | DENG Qiang, ZHENG Fenghua, ZHONG Wentao,et al.Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries[J].Chemical Engineering Journal,2021,404:126446. |
64 | ZHANG Shiguang, LI Xinyan, SU Yun,et al.Four-in-one strategy to boost the performance of Na x [Ni,Mn]O2 [J].Advanced Functional Materials,2023.Doi:10.1002/adfm.202301568. |
[1] | 杨福, 解玉龙. 三元材料LiNi0.65Co0.15Mn0.2O2的制备及Na+掺杂改性研究[J]. 无机盐工业, 2025, 57(3): 43-49. |
[2] | 宋佳禧, 计任飞, 陈君, 林森, 于建国. 深度失活三元正极材料特性分析及预处理研究[J]. 无机盐工业, 2025, 57(2): 44-49. |
[3] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
[4] | 陈雪, 欧阳全胜, 邵姣婧. 基于固-固反应机制锂硫电池的最新研究进展[J]. 无机盐工业, 2024, 56(9): 12-23. |
[5] | 苏宝才, 张勤, 谢元健, 蔡平雄, 潘远凤. 磷酸铁锰锂材料的合成方法及结构改性的研究进展[J]. 无机盐工业, 2024, 56(7): 28-36. |
[6] | 王君婷, 马航, 查坐统, 万邦隆, 张振环. 磷酸铁工业废水处理工艺研究进展[J]. 无机盐工业, 2024, 56(6): 26-33. |
[7] | 刘杰, 石雪茹, 魏树兵, 曹鑫鑫. P2型层状氧化物正极的人工界面层构筑及储钠性能[J]. 无机盐工业, 2024, 56(3): 39-44. |
[8] | 刘德新, 马腾跃, 安金玲, 刘进荣, 何伟艳. 锰基钠离子电池正极材料设计及电化学性能研究[J]. 无机盐工业, 2024, 56(3): 51-55. |
[9] | 周煌, 胡晓萍, 任稳, 曹鑫鑫. 硫掺杂Na3(VOPO4)2F正极材料的制备及储钠性能[J]. 无机盐工业, 2024, 56(2): 30-37. |
[10] | 王亿周, 胡晓梅, 王永详, 张维民. 镍铁锰酸钠层状氧化物的制备及性能研究[J]. 无机盐工业, 2024, 56(2): 57-64. |
[11] | 葛建华, 谢敏燕, 欧阳全胜, 邵姣婧. 废旧动力电池正极材料再生工艺研究进展[J]. 无机盐工业, 2024, 56(12): 79-87. |
[12] | 许有, 马路祥, 海春喜, 董生德, 许琪, 贺欣, 潘稳丞, 高亚文, 谌炬, 孙艳霞, 周园. 钠离子电池煤基硬碳负极材料的研究进展及产业化挑战[J]. 无机盐工业, 2024, 56(11): 30-38. |
[13] | 马镰仁, 谢红艳. 采用两步固相法配合表面活性剂制备LiMn0.7Fe0.3PO4/C正极材料的研究[J]. 无机盐工业, 2024, 56(11): 39-44. |
[14] | 许希军, 林见烽, 罗雄伟, 赵经纬, 霍延平. NASICON型Na1+x Zr2Si x P3-x O12固态电解质及其钠金属电池研究进展[J]. 无机盐工业, 2024, 56(11): 1-14. |
[15] | 刘佳盛, 罗晓强, 侯翠红, 薛灵伟. 氟掺杂对LiMn0.8Fe0.2PO4/C正极材料电化学性能的影响[J]. 无机盐工业, 2024, 56(11): 45-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|