| [1] | Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocryst-als produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253. | 
																													
																						| [2] | Hu Q, Sun D, Wu Q, et al. MXene:A new family of promising hydro-gen storage medium[J]. Journal of Physical Chemistry A, 2013, 117(51):14253-14260. | 
																													
																						| [3] | Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitri-des(MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2).Doi: 10.1038/natrevmats.2016.98. | 
																													
																						| [4] | 郑伟, 杨莉, 张培根, 等. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15):2513-2537. | 
																													
																						| [5] | 郝峰. 锂离子电池的替代者——钠离子电池研究现状分析[J]. 化工管理, 2018(28):62. | 
																													
																						| [6] | Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2(X=F,OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40):16909-16916. | 
																													
																						| [7] | Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors go-verning the oxidation of two-dimensional Ti3C2 MXene[J]. Nanosc-ale, 2019, 11(17):8387-8393. | 
																													
																						| [8] | Lipatov A, Alhabeb M, Lukatskaya M R, et al. Effect of synjournal on quality,electronic properties and environmental stability of indivi-dual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016, 2(12):1600255-1600264. | 
																													
																						| [9] | Sang X, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide(Ti3C2Tx) MXene[J]. Acs Nano, 2016, 10(10):9193-9200. | 
																													
																						| [10] | Hart J L, Hantanasirisakul K, Lang A C, et al. Control of MXenes′ electronic properties through termination and intercalation[J]. Nat-ure Communications, 2019, 10(1):522-531. | 
																													
																						| [11] | 李友兵, 方菲. 二维过渡金属碳化物的研究现状及在吸波领域的应用[J]. 科技经济导刊, 2017(1):80. | 
																													
																						| [12] | Yun T, Kim H, Iqbal A, et al. Electromagnetic shielding of mono-layer MXene assemblies[J]. Advanced Materials, 2020, 32(9):1906769-1906777. | 
																													
																						| [13] | Fan Z, Wang D, Yuan Y, et al. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 381(1):122696-122703. | 
																													
																						| [14] | Wang X, Xi S, Gao Y, et al. Atomic-scale recognition of surface st-ructure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society, 2015, 137(7):2715-2721. | 
																													
																						| [15] | Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-ion intercalation mechanism in MXene nanosheets[J]. Acs Nano, 2016, 10(3):3334-3341. | 
																													
																						| [16] | Song X L, Wang H, Jin S M, et al. Oligolayered Ti3C2Tx MXene to-wards high performance lithium/sodium storage[J]. Nano Rese-search, 2020, 13(6):1659-1667. | 
																													
																						| [17] | Xie X, Kretschmer K, Anasori B, et al. Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life[J]. ACS App-lied Nano Materials, 2018, 1(2):505-511. | 
																													
																						| [18] | Zhao M Q, Xie X, Ren C E, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage[J]. Advanced Materials, 2017, 29(37).Doi: 10.1002/adma.201702410. | 
																													
																						| [19] | 谢银斯, 孙丁武, 林维捐, 等. 钠离子电池负极材料研究进展[J]. 电源技术, 2019, 43(2):351-353. | 
																													
																						| [20] | 黄剑锋, 王彩薇, 李嘉胤, 等. 钠离子电池碳基负极材料的研究进展[J]. 材料导报, 2017, 31(21):19-23. | 
																													
																						| [21] | Zhang P, Soomro R A, Guan Z, et al. 3D carbon-coated MXene ar-chitectures with high and ultrafast lithium/sodium-ion storage[J]. Energy Storage Materials, 2020, 29:163-171. | 
																													
																						| [22] | 袁振洲, 刘丹敏, 田楠, 等. 二维黑磷的结构、制备和性能[J]. 化学学报, 2016, 74(06):488-497. | 
																													
																						| [23] | Zhao R, Qian Z, Liu Z, et al. Molecular-level heterostructures as-sembled from layered black phosphorene and Ti3C2 MXene as su-perior anodes for high-performance sodium ion batteries[J]. Nano Energy, 2019, 65:104037-104047. | 
																													
																						| [24] | 肖娜, 潘洋, 宋云, 等. 锑硅纳米复合薄膜作为钠离子电池负极材料的电化学行为研究[J]. 无机材料学报, 2018, 33(5):494-500. | 
																													
																						| [25] | Maughan P A, Seymour V R, Bernardo Gavito R, et al. Porous silica-pillared MXenes with controllable interlayer distances for long-life Na-ion batteries[J]. Langmuir, 2020, 36(16):4370-4382. | 
																													
																						| [26] | Wang P, Lu X, Boyjoo Y, et al. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteri-es[J]. Journal of Power Sources, 2020, 451(1):227756-227764. | 
																													
																						| [27] | Yang C, Liu Y, Sun X, et al. In-situ construction of hierarchical ac-cordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries[J]. Electrochimica Acta, 2018, 271(1):165-172. | 
																													
																						| [28] | 张帅, 李慧, 梁精龙. 二氧化钒的制备工艺现状[J]. 矿产综合利用, 2021(2):119-123. | 
																													
																						| [29] | Wu F, Jiang Y, Ye Z, et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion bat-teries[J]. Journal of Materials Chemistry A, 2019, 7(3):1315-1322. | 
																													
																						| [30] | Guo X, Xie X, Choi S, et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(24):12445-12452. | 
																													
																						| [31] | 马艳梅. 钠离子电池硫化物负极材料的研究进展[J]. 储能科学与技术, 2019, 8(3):488-494. | 
																													
																						| [32] | 胡平, 陈震宇, 王快社, 等. 二维层状二硫化钼复合材料的研究进展及发展趋势[J]. 化工学报, 2017, 68(4):1286-1298. | 
																													
																						| [33] | Ma K, Jiang H, Hu Y, et al. 2D nanospace confined synjournal of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries[J]. Advanced Functional Materials, 2018, 28(40).Doi: 10.1002/adfm.201804306. | 
																													
																						| [34] | Chauhan H, Singh M K, Hashmi S A, et al. Synjournal of surfactant-free SnS nanorods by a solvothermal route with better electroche-mical properties towards supercapacitor applications[J]. Rsc Advances, 2015, 5(22):17228-17235. | 
																													
																						| [35] | Zhang Y, Guo B, Hu L, et al. Synjournal of SnS nanoparticle-modi-fied MXene(Ti3C2Tx) composites for enhanced sodium storage[J]. Journal of Alloys and Compounds, 2018, 732(25):448-453. | 
																													
																						| [36] | Wen L, Feng L, Qidong L et al.Heterostructured Bi2S3-Bi2O3 nano-sheets with a built-in electric field for improved sodium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(8):7201-7207. | 
																													
																						| [37] | Yang Q, Gao W, Zhong W, et al. A synergistic Bi2S3/MXene compo-site with enhanced performance as an anode material of sodium-ion batteries[J]. New Journal of Chemistry, 2020, 44(7):3072-3077. |