无机盐工业 ›› 2024, Vol. 56 ›› Issue (11): 1-14.doi: 10.19964/j.issn.1006-4990.2024-0275
• 新能源电池材料 • 下一篇
许希军1(), 林见烽1, 罗雄伟1, 赵经纬2(
), 霍延平1(
)
收稿日期:
2024-06-14
出版日期:
2024-11-10
发布日期:
2024-07-01
通讯作者:
赵经纬(1977— ),男,博士,正高级工程师,研究方向为锂/钠离子电池;E-mail:zhaojingwei@tinci.com。作者简介:
许希军(1990— ),男,博士,研究方向为钠离子电池电极材料、固态电解质等储能材料与器件;E-mail:xuxijun2022@gdut.edu.cn。
基金资助:
XU Xijun1(), LIN Jianfeng1, LUO Xiongwei1, ZHAO Jingwei2(
), HUO Yanping1(
)
Received:
2024-06-14
Published:
2024-11-10
Online:
2024-07-01
摘要:
锂离子电池由于具有较高的工作电压和能量密度实现了商业化。然而,有限的锂资源限制了其广泛应用。钠离子电池展现出与锂离子电池相似的电化学特性,并且钠盐资源更加丰富,因此受到了广泛关注。目前,钠离子电池使用的是有机电解液,这存在一系列安全隐患,如漏液和燃烧等,采用固态电解质可以有效解决这些问题。然而,电解质的离子电导率仍有待提升,且材料制备的一致性及与电极间的界面阻抗问题限制了其广泛应用。针对离子电导率的问题,总结分析了不同价态离子取代的影响。针对存在的界面问题,从正极、负极两侧分析了现有Na1+x Zr2Si x P3-x O12电解质的界面改性方法。最后,对Na1+x Zr2Si x P3-x O12电解质的发展方向进行了展望,有望推动固态钠离子电池的发展。
中图分类号:
许希军, 林见烽, 罗雄伟, 赵经纬, 霍延平. NASICON型Na1+x Zr2Si x P3-x O12固态电解质及其钠金属电池研究进展[J]. 无机盐工业, 2024, 56(11): 1-14.
XU Xijun, LIN Jianfeng, LUO Xiongwei, ZHAO Jingwei, HUO Yanping. Recent progress of NASICON-type Na1+x Zr2Si x P3-x O12 solid electrolyte for sodium metal batteries[J]. Inorganic Chemicals Industry, 2024, 56(11): 1-14.
表3
不同离子取代NASICON固态电解质的离子电导率
化学式 | 取代离子 | 离子电导率/ (S·cm-1) |
---|---|---|
Na2.9K0.1Zr2Si2PO12[ | K+ | 7.7×10-4 |
Na3.456Zr1.872Mg0.128Si2.2P0.8O12[ | Mg2+ | 3.2×10-3 |
Na3.1Zr1.95Mg0.05Si2PO12[ | Mg2+ | 3.5×10-3 |
Na3.4Zr1.9Zn0.1Si2.2P0.8O12[ | Zn2+ | 5.27×10-3 |
Na3.325Zr1.937 5Mg0.062 5Si2.2P0.8O12[ | Mg2+ | 2.7×10-3 |
Na3.4Zr1.8Cu0.2Si2PO12[ | Cu2+ | 1.94×10-3 |
Na3.4Zr1.8Ca0.2Si2PO12[ | Ca2+ | 1.67×10-3 |
Na3.4Zr1.8Fe0.2Si2PO12[ | Fe2+ | 3.9×10-4 |
Na3.2Zr1.9Co0.1Si2PO12[ | Co2+ | 3.3×10-4 |
Na3.6Zr1.7Ni0.3Si2PO12[ | Ni2+ | 1.1×10-4 |
Na3.4Zr1.6Sc0.4Si2PO12[ | Sc3+ | 1.77×10-3 |
Na3.12Zr1.88Y0.12Si2PO12[ | Y3+ | 2.0×10-3 |
Na3.3Zr1.7Pr0.3Si2PO12[ | Pr3+ | 1.3×10-3 |
Na3.3Zr1.7La0.3Si2PO12[ | La3+ | 1.3×10-3 |
Na3.1Zr1.9La0.1Si2PO12[ | La3+ | 1.1×10-3 |
Na3.1Zr1.9Ga0.1Si2PO12[ | Ga3+ | 1.1×10-3 |
Na3.3Zr1.7Eu0.3Si2PO12[ | Eu3+ | 1.1×10-3 |
Na3.3Zr1.7Lu0.3Si2PO12[ | Lu3+ | 8.3×10-4 |
Na3.2Zr1.8Fe0.2Si2PO12[ | Fe3+ | 7.5×10-4 |
Na3.1Zr1.9Nd0.1Si2PO12[ | Nd3+ | 6.9×10-4 |
Na3.2Zr1.8Al0.2Si2PO12[ | Al3+ | 4.4×10-4 |
Na3Zr1.98Ce0.02Si2PO12[ | Ce4+ | 4.1×10-2 |
Na3Zr1.9Ce0.1Si2PO12[ | Ce4+ | 4.01×10-2 |
Na3.4Zr2Si2.4P0.6O12[ | Si4+ | 5.0×10-3 |
Na3Zr2Si1.85Ge0.15PO12[ | Ge4+ | 1.4×10-3 |
Na3Zr1.9Ti0.1Si2PO12[ | Ti4+ | 3.8×10-4 |
Na3.3Zr1.9Nb0.1Si2.4P0.6O12[ | Nb5+ | 5.5×10-3 |
Na3.125Zr1.75Sc0.125Ge0.125Si2PO12[ | Sc3+、Ge4+ | 4.64×10-3 |
Na3.33Zr1.65Sc0.33Ce0.02Si2PO12[ | Sc3+、Ce4+ | 2.4×10-3 |
Na3.33Zr1.67Sc0.29Yb0.04Si2PO12[ | Sc3+、Yb3+ | 1.62×10-3 |
Na3.2Hf1.9Ca0.1Si2PO12[ | Hf2+、Ca2+ | 1.07×10-3 |
Na3.2Hf2Si2.2P0.8O12[ | Hf4+、Si4+ | 2.3×10-3 |
Na3.325Zr1.937 5Mg0.062 5Si2.2P0.8O12[ | Mg2+、Si4+ | 2.7×10-3 |
Na3.1Zr1.9Y0.1Si2PO12-1%B2O3[ | Y3+ | 1.21×10-3 |
1 | 李亚广,韩东战,齐利娟.废旧锂离子电池预处理及电解液回收技术研究现状[J].无机盐工业,2024,56(02):1-10. |
LI Yaguang, HAN Dongzhan, QI Lijuan.Research status of pretreatment and electrolyte recovery of waste lithium-ion batteries[J].Inorganic Chemical Industry,2024,56(02):1-10. | |
2 | LI Chi, LI Rui, LIU Kaining,et al.NaSICON:A promising solid electrolytefor solid-state sodium batteries[J].Interdisciplinary Materials,2022,1(3):396-416. |
3 | LI Yu, ZHANG Jiawei, CHEN Qingguo,et al.Emerging of heterostructure materials in energy storage:A review[J].Advanced Materials,2021,33(27):2100855. |
4 | 刘德新,马腾跃,安金玲,等.锰基钠离子电池正极材料设计及电化学性能研究[J].无机盐工业,2024,56(3):51-55. |
LIU Dexin, MA Tengyue, AN Jinling,et al.Study on cathode material design and electrochemical properties of manganese-based sodium ion battery[J].Inorganic Chemicals Industry,2024,56(3):51-55. | |
5 | WU Fan, WU Shaoyang, YE Xin,et al.Research progress of high-entropy cathode materials for sodium-ion batteries[J].Chinese Chemical Letters,2024:109851. |
6 | SHEN Liying, LI Yong, ROY S,et al.A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries[J].Chinese Chemical Letters,2021,32(11):3570-3574. |
7 | SHI Jingyu, WU Xiaofeng, CHEN Yutong,et al.Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte[J].Chinese Chemical Letters,2024:109938. |
8 | 彭晨熹,刘军.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].无机盐工业,2023,55(10):1-12,69. |
PENG Chenxi, LIU Jun.Research progress of layered transition metal oxides cathode materials for sodium-ion batteries[J].Inorganic Chemicals Industry,2023,55(10):1-12,69. | |
9 | LI Zhaopeng, LIU Pei, ZHU Kunjie,et al.Solid-state electrolytes for sodium metal batteries[J].Energy & Fuels,2021,35(11):9063-9079. |
10 | LI Yang, LI Meng, SUN Zheng,et al.Recent advance on NASICON electrolyte in solid-state sodium metal batteries[J].Energy Storage Materials,2023,56:582-599. |
11 | RAO Y B, BHARATHI K K, PATRO L N.Review on the synthesis and doping strategies in enhancing the Na ion conductivity of Na3Zr2Si2PO12(NASICON) based solid electrolytes[J].Solid State Ionics,2021,366:115671. |
12 | LU Yong, LI Lin, ZHANG Qiu,et al.Electrolyte and interface engineering for solid-state sodium batteries[J].Joule,2018,2(9):1747-1770. |
13 | HONG H Y P.Crystal structures and crystal chemistry in the system Na1+ x Zr2Si x P3- x O12 [J].Materials Research Bulletin,1976, 11(2):173-182. |
14 | HOU Wenru, GUO Xianwei, SHEN Xuyang,et al.Solid electrolytes and interfaces in all-solid-state sodium batteries:Progress and perspective[J].Nano Energy,2018,52:279-291. |
15 | GROSS M M, PERCIVAL S J, SMALL L J,et al.Low-temperature molten sodium batteries[J].ACS Applied Energy Materials,2020,3(11):11456-11462. |
16 | TSAI C L, LAN Tu, DELLEN C,et al.Dendrite-tolerant all-solid-state sodium batteries and an important mechanism of metal self-diffusion[J].Journal of Power Sources,2020,476:228666. |
17 | 刘创,卢海燕,曹余良.钠离子电池合金类负极材料的研究进展[J].中国材料进展,2017,36(10):718-727. |
LIU Chuang, LU Haiyan, CAO Yuliang.Research progress on alloy anode materials for sodium ion batteries[J].Materials China,2017,36(10):718-727. | |
18 | NIAZMAND M, KHAKPOUR Z, MORTAZAVI A.Electrochemical properties of nanostructure NASICON synthesized by chemical routes:A comparison between coprecipitation and sol-gel[J].Journal of Alloys and Compounds,2019,798:311-319. |
19 | DHAS N A, PATIL K C.Controlled combustion synthesis and properties of fine-particle NASICON materials[J].Journal of Materials Chemistry,1994,4(3):491-497. |
20 | CLEARFIELD A, JERUS P, COTMAN R N.Hydrothermal and solid state synthesis of sodium zirconium silicophosphates[J].Solid State Ionics,1981,5:301-304. |
21 | FUENTES R O, FIGUEIREDO F M, SOARES M R,et al.Submicrometric NASICON ceramics with improved electrical conductivity obtained from mechanically activated precursors[J].Journal of the European Ceramic Society,2005,25(4):455-462. |
22 | 李榅凯,赵宁,毕志杰,等.钠离子电池Na3Zr2Si2PO12陶瓷电解质的喷雾干燥法制备及性能优化[J].无机材料学报,2022,37(2):189-196. |
LI Wenkai, ZHAO Ning, BI Zhijie,et al.Na3Zr2Si2PO12 ceramic electrolytes for Na-ion battery:Preparation using spray-drying method and its property[J].Journal of Inorganic Materials,2022,37(2):189-196. | |
23 | LIU Saiyue, ZHOU Chang, WANG You,et al.Ce-substituted nanograin Na3Zr2Si2PO12 prepared by LF-FSP as sodium-ion conductors[J].ACS Applied Materials & Interfaces,2020,12(3):3502-3509. |
24 | YANG Guanming, ZHAI Yanfang, YAO Jianyao,et al.A facile method for the synthesis of a sintering dense nano-grained Na3Zr2Si2PO12 Na-ion solid-state electrolyte[J].Chemical Communications,2021,57(33):4023-4026. |
25 | DUBEY B P, VINODHKUMAR A, SAHOO A,et al.Microstructural tuning of solid electrolyte Na3Zr2Si2PO12 by polymer-assisted solution synthesis method and its effect on ionic conductivity and dielectric properties[J].ACS Applied Energy Materials,2021,4(6):5475-5485. |
26 | YANG Zhendong, TANG Bin, XIE Zhaojun,et al.NASICON-type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries[J].ChemElectroChem,2021,8(6):1035-1047. |
27 | NARAYANAN S, REID S, BUTLER S,et al.Sintering temperature,excess sodium,and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12 [J].Solid State Ionics,2019,331:22-29. |
28 | MA Qianli, GUIN M, NAQASH S,et al.Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J].Chemistry of Materials,2016,28(13):4821-4828. |
29 | CHEN Shaojie, NIE Lu, HU Xiangchen,et al.Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries[J].Advanced Materials,2022,34(33):2200430. |
30 | ZHANG Lixiao, LIU Yimeng, YOU Ya,et al.NASICONs-type solid-state electrolytes:The history,physicochemical properties,and challenges[J].Interdisciplinary Materials,2023,2(1):91- 110. |
31 | RUAN Yanli, GUO Fang, LIU Jingjing,et al.Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery[J].Ceramics International,2019,45(2):1770-1776. |
32 | CAO Xiaoguo, ZHANG Xiaohua, TAO Tao,et al.Effects of antimo-ny tin oxide(ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes[J].Ceramics International,2020,46(6):8405-8412. |
33 | DZIUBANIUK M, TRZĘSIEC M, PASIERB P,et al.Application of anion-conducting lanthanum oxychloride for potentiometric chlorine gas sensors[J].Solid State Ionics,2012,225:324-327. |
34 | 才绅.NASICON型电解质界面优化及在固态钠电池中的应 用[D].唐山:华北理工大学,2022. |
CAI Shen.Interface optimization of NASICON electrolyte and its application in solid-state sodium battery[D].Tangshan:North China University of Science and Technology,2022. | |
35 | PARK H, JUNG K, NEZAFATI M,et al.Sodium ion diffusion in nasicon(Na3Zr2Si2PO12) solid electrolytes:Effects of excess sodium[J].ACS Applied Materials & Interfaces,2016,8(41):27814-27824. |
36 | SHAO Yuanjun, ZHONG Guiming, LU Yaxiang,et al.A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity[J].Energy Storage Materials,2019,23:514-521. |
37 | LU Yao, ALONSO J A, YI Qiang,et al.A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J].Advanced Energy Materials,2019,9(28):1901205. |
38 | BELL N S, EDNEY C, WHEELER J S,et al.The influences of excess sodium on low-temperature NASICON synthesis[J].Journal of the American Ceramic Society,2014,97(12):3744-3748. |
39 | KIDA T, MIYACHI Y, SHIMANOE K,et al.NASICON thick film-based CO2 sensor prepared by a sol-gel method[J].Sensors and Actuators B:Chemical,2001,80(1):28-32. |
40 | ZHANG Shuang, QUAN Baofu, ZHAO Zhiyong,et al.Preparation and characterization of NASICON with a new sol-gel process[J].Materials Letters,2004,58(1-2):226-229. |
41 | YADAV P, BHATNAGAR M C.Structural studies of NASICON material of different compositions by sol-gel method[J].Ceramics International,2012,38(2):1731-1735. |
42 | GOODENOUGH J B, PARK K S.The Li-ion rechargeable battery:A perspective[J].Journal of the American Chemical Society,2013,135(4):1167-1176. |
43 | TRAVERSA E, AONO H, SADAOKA Y,et al.Electrical properties of sol-gel processed NASICON having new compositions[J].Sensors and Actuators B:Chemical,2000,65(1/2/3):204-208. |
44 | YOLDAS B E, LLOYD I K.Nasicon formation by chemical polymerization[J].Materials Research Bulletin,1983,18(10):1171-1177. |
45 | 章志珍,施思齐,胡勇胜,等.溶胶-凝胶法制备钠离子固态电解质Na3Zr2Si2PO12及其电导性能研究[J].无机材料学报,2013,28(11):1255-1260. |
ZHANG Zhizhen, SHI Siqi, HU Yongsheng,et al.Sol-gel synthesis and conductivity properties of sodium ion solid state electrolytes Na3Zr2Si2PO12 [J].Journal of Inorganic Materials,2013, 28(11):1255-1260. | |
46 | YANG Jing, LIU Gaozhan, AVDEEV M,et al.Ultrastable all-solid-state sodium rechargeable batteries[J].ACS Energy Letters,2020,5(9):2835-2841. |
47 | SUN Fei, XIANG Yuxuan, SUN Qian,et al.Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes[J].Advanced Functional Materials,2021,31(31):2102129. |
48 | HAN Fudong, YUE Jie, CHEN Cheng,et al.Interphase engineering enabled all-ceramic lithium battery[J].Joule,2018,2(3):497-508. |
49 | WANG Chengwei, ZHONG Wei, PING Weiwei,et al.Rapid synthesis and sintering of metals from powders[J].Advanced Science,2021,8(12):2004229. |
50 | ZUO Daxian, YANG Lin, ZOU Zheyi,et al.Ultrafast synthesis of NASICON solid electrolytes for sodium-metal batteries[J].Advanced Energy Materials,2023,13(37):2301540. |
51 | LI Fupeng, HOU Minjie, ZHAO Lanqing,et al.Electrolyte and interface engineering for solid-state sodium batteries[J].Energy Storage Materials,2024,65:103181. |
52 | HUANG Jiawen, WU Kuan, XU Gang,et al.Recent progress and strategic perspectives of inorganic solid electrolytes:Fundamentals,modifications,and applications in sodium metal batteries[J].Chemical Society Reviews,2023,52(15):4933-4995. |
53 | SAMIEE M, RADHAKRISHNAN B, RICE Zane,et al.Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor:Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases[J].Journal of Power Sources,2017,347:229-237. |
54 | TAKAHASHI T, KUWABARA K, SHIBATA M.Solid-state ionics-conductivities of Na+ ion conductors based on NASICON[J].Solid State Ionics,1980,1(3-4):163-175. |
55 | SONG Shufeng, DUONG H M, KORSUNSKY A M,et al.A Na+ superionic conductor for room-temperature sodium batteries[J].Scientific Reports,2016,6:32330. |
56 | JOLLEY A G, COHN G, HITZ G T,et al.Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12 [J].Ionics,2015,21(11):3031-3038. |
57 | CHEN Dan, LUO Fa, ZHOU Wancheng,et al.Influence of Nb5+,Ti4+,Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J].Journal of Alloys and Compounds,2018,757:348-355. |
58 | ZHANG Qingkai, LIANG Feng, QU Tao,et al.Effect on ionic conductivity of Na3+ x Zr2- x M x Si2PO12(M=Y,La) by doping rare-earth elements[J].IOP Conference Series:Materials Science and Engineering,2018,423:012122. |
59 | FUENTES R O, FIGUEIREDO F M, MARQUES F M B,et al.Influence of microstructure on the electrical properties of NASICON materials[J].Solid State Ionics,2001,140(1/2):173-179. |
60 | RUAN Yanli, SONG Shidong, LIU Jingjing,et al.Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions[J].Ceramics International,2017,43(10):7810-7815. |
61 | ZHANG Zhizhen, ZHANG Qinghua, SHI Jinan,et al.A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J].Advanced Energy Materials,2017,7(4):1601196. |
62 | SUBRAMANIAN M A, RUDOLF P R, CLEARFIELD A.The preparation,structure,and conductivity of scandium-substituted NASICONs[J].Journal of Solid State Chemistry,1985,60(2):172-181. |
63 | PAL S K, SAHA R, KUMAR G V,et al.Designing high ionic conducting NASICON-type Na3Zr2Si2PO12 solid-electrolytes for Na-ion batteries[J].The Journal of Physical Chemistry C,2020, 124(17):9161-9169. |
64 | WANG Qiao, YU Chuang, LI Liping,et al.Sc-doping in Na3Zr2Si2PO12 electrolytes enables preeminent performance of solid-state sodium batteries in a wide temperature range[J].Energy Storage Materials,2023,54:135-145. |
65 | KHAKPOUR Z.Influence of M:Ce4+,Gd3+ and Yb3+ substituted Na3+ x Zr2- x M x Si2PO12 solid NASICON electrolytes on sintering,microstructure and conductivity[J].Electrochimica Acta,2016,196:337-347. |
66 | XIE Bingxing, JIANG Danyu, WU Jian,et al.Effect of substituting Ce for Zr on the electrical properties of NASICON materi-als[J].Journal of Physics and Chemistry of Solids,2016,88:104-108. |
67 | LIU Yujian, LIU Limin, PENG Jinsong,et al.A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm-1 prepared by solution-assisted solid-state reaction method[J].Journal of Power Sources,2022,518:230765. |
68 | 马嘉韩.过渡金属掺杂NASICON型固态电解质的制备及性能研究[D].唐山:华北理工大学,2019. |
MA Jiahan.Preparation and properties of transition metal doped NASICON solid electrolyte[D].Tangshan:North China University of Science and Technology,2019. | |
69 | LENG Haoyang, HUANG Jiajia, NIE Jiuyuan,et al.Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes[J].Journal of Power Sources,2018,391:170-179. |
70 | LENG Haoyang, NIE Jiuyuan, LUO Jian.Combining cold sintering and Bi2O3-activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures[J].Journal of Materiomics,2019,5(2):237-246. |
71 | YANG Jing, WAN Hongli, ZHANG Zhihua,et al.NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries[J].Rare Metals,2018,37(6):480-487. |
72 | SHEN Lin, YANG Jing, LIU G,et al.High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries[J].Materials Today Energy,2021,20:100691. |
73 | CHAKRABORTY A, THIRUPATHI R, BHATTACHARYYA S,et al.Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries[J].Journal of Power Sources,2023,572:233092. |
74 | LI Zuxiang, YANG Huijun, TANG Shunbao,et al.Phase relationship and electrical conductivity of Na3Zr2 x Ce x Si2PO12 system[J].Journal of Inorganic Material,1991,6:125–128. |
75 | ZHANG Zhizhen, ZOU Zheyi, KAUP K,et al.Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes[J].Advanced Energy Materials,2019,9(42):1902373. |
76 | RAN Lingbing, BAKTASH A, LI Ming,et al.Sc,Ge co-doping NASICON boosts solid-state sodium ion batteries' performan-ce[J].Energy Storage Materials,2021,40:282-291. |
77 | THIRUPATHI R, OMAR S.A strategic co-doping approach using Sc3+ and Ce4+ toward enhanced conductivity in NASICON-type Na3Zr2Si2PO12 [J].The Journal of Physical Chemistry C,2021,125(50):27723-27735. |
78 | HEO E, WANG J E, YUN J H,et al.Improving room temperature ionic conductivity of Na3– x K x Zr2Si2PO12 solid-electrolytes:Effects of potassium substitution[J].Inorganic Chemistry,2021,60(15):11147-11153. |
79 | LI Donglai, SUN Chen, WANG Chengzhi,et al.Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature[J].Energy Storage Materials,2023,54:403-409. |
80 | LUO Jing, ZHAO Gaolei, QIANG Wenjiang,et al.Synthesis of Na ion-electron mixed conductor Na3Zr2Si2PO12 by doping with transition metal elements (Co,Fe,Ni)[J].Journal of the American Ceramic Society,2022,105(5):3428-3437. |
81 | FUENTES R O, FIGUEIREDO F M, MARQUES F M B,et al.Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors[J].Journal of the European Ceramic Society,2001,21(6):737-743. |
82 | WANG Xinxin, CHEN Jingjing, MAO Zhiyong,et al.Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity[J].Chemical Engineering Journal,2022,427:130899. |
83 | SUN Fei, XIANG Yuxuan, SUN Qian,et al.Insight into ion diffusion dynamics/mechanisms and electronic structure of highly conductive sodium-rich Na3+ x La x Zr2- x Si2PO12(0≤x≤0.5) solid-state electrolytes[J].ACS Applied Materials & Interfaces,2021,13(11):13132-13138. |
84 | HUANG Congcai, YANG Guanming, YU Wenhao,et al.Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes[J].Journal of Alloys and Compounds,2021,855:157501. |
85 | MA Qianli, TSAI C L, WEI Xiankui,et al.Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm-1 and its primary applications in symmetric battery cells[J].Journal of Materials Chemistry A,2019,7(13):7766-7776. |
86 | TIAN Haoqing, LIU Shan, DENG Lijun,et al.New-type Hf-based NASICON electrolyte for solid-state Na-ion batteries with superior long-cycling stability and rate capability[J].Energy Storage Materials,2021,39:232-238. |
87 | VOGEL E M, CAVA R J, RIETMAN E.Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1+ x Hf2Si x P3- x O12 [J].Solid State Ionics,1984,14(1):1-6. |
88 | MIAO Rijian, CAO Xiaoguo, WANG Wenguang,et al.Influence of Bi2O3 additive on the electrochemical performance of Na3.1Y0.1Zr1.9Si2PO12 inorganic solid electrolyte[J].Ceramics International,2021,47(12):17455-17462. |
89 | NOGUCHI Y, KOBAYASHI E, PLASHNITSA L S,et al.Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds[J].Electrochimica Acta,2013,101:59-65. |
90 | 杨菁,刘高瞻,沈麟,等.NASICON结构钠离子固态电解质及固态钠电池应用研究进展[J].储能科学与技术,2020,9(5):1284-1299. |
YANG Jing, LIU Gaozhan, SHEN Lin,et al.Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries[J].Energy Storage Science and Technology,2020,9(5):1284-1299. | |
91 | DAI Peng, SHI Chenguang, HUANG Zheng,et al.A new film-forming electrolyte additive in enhancing the interface of layered cathode and cycling life of sodium ion batteries[J].Energy Storage Materials,2023,56:551-561. |
92 | LIU Lilu, QI Xingguo, MA Qiang,et al.Toothpaste-like electrode:A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J].ACS Applied Materials & Interfaces,2016,8(48):32631-32636. |
93 | GAO Xinran, XING Zheng, WANG Mingyue,et al.Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries[J].Energy Storage Materials,2023,60:102821. |
94 | NIU Wei, CHEN Long, LIU Yongchang,et al.All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase[J].Chemical Engineering Journal,2020,384:123233. |
95 | GAO Hongcai, XUE Leigang, XIN Sen,et al.A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J].Angewandte Chemie,2017,56(20):5541-5545. |
96 | WANG Qianchen, LI Jingbo, JIN Haibo,et al.Prussian-blue materials:Revealing new opportunities for rechargeable batteries[J].InfoMat,2022,4(6):e12311. |
97 | YANG Jiayi, GAO Zhonghui, FERBER T,et al.Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries[J].Journal of Materials Chemistry A,2020,8(16):7828-7835. |
98 | ZHOU Weidong, LI Yutao, XIN Sen,et al.Rechargeable sodium all-solid-state battery[J].ACS Central Science,2017,3(1):52-57. |
99 | WANG Han, SUN Yongjiang, LIU Qing,et al.An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries[J].Journal of Energy Chemistry,2022,74:18-25. |
100 | GAO Zhonghui, YANG Jiayi, YUAN Haiyang,et al.Stabilizing Na3Zr2Si2PO12/Na interfacial performance by introducing a clean and Na-deficient surface[J].Chemistry of Materials,2020, 32(9):3970-3979. |
101 | SU Hang, ZHANG Shiwei, LIU Yimeng,et al.Na3Zr2Si2PO12 solid-state electrolyte with glass-like morphology for enhanced dendrite suppression[J].Rare Metals,2022,41(12):4086-4093. |
102 | GROSS M M, SMALL L J, PERETTI A S,et al.Tin-based ionic chaperone phases to improve low temperature molten sodium-NaSICON interfaces[J].Journal of Materials Chemistry A,2020,8(33):17012-17018. |
103 | WANG Xinxin, CHEN Jingjing, MAO Zhiyong,et al. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery[J].Journal of Materials Chemistry A,2021,9(29):16039-16045. |
104 | CAO Keshuang, ZHAO Xitong, CHEN Jian,et al.Hybrid design of bulk-Na metal anode to minimize cycle-induced interface deterioration of solid Na metal battery[J].Advanced Energy Materials,2022,12(7):2102579. |
105 | FU Haoyu, YIN Qingyang, HUANG Ying,et al.Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery[J].ACS Materials Letters,2020,2(2):127-132. |
[1] | 马静媛, 李妍, 周晗洁, 李建刚. PEO基有机/无机复合固态电解质的研究进展[J]. 无机盐工业, 2025, 57(3): 1-8. |
[2] | 刘杰, 石雪茹, 魏树兵, 曹鑫鑫. P2型层状氧化物正极的人工界面层构筑及储钠性能[J]. 无机盐工业, 2024, 56(3): 39-44. |
[3] | 王亿周, 胡晓梅, 王永详, 张维民. 镍铁锰酸钠层状氧化物的制备及性能研究[J]. 无机盐工业, 2024, 56(2): 57-64. |
[4] | 周煌, 胡晓萍, 任稳, 曹鑫鑫. 硫掺杂Na3(VOPO4)2F正极材料的制备及储钠性能[J]. 无机盐工业, 2024, 56(2): 30-37. |
[5] | 万峰, 闫迎春, 范壮军. 卤化物固态电解质研究进展与展望[J]. 无机盐工业, 2024, 56(11): 15-29. |
[6] | 许有, 马路祥, 海春喜, 董生德, 许琪, 贺欣, 潘稳丞, 高亚文, 谌炬, 孙艳霞, 周园. 钠离子电池煤基硬碳负极材料的研究进展及产业化挑战[J]. 无机盐工业, 2024, 56(11): 30-38. |
[7] | 康乐, 景茂祥, 李东红, 扈鑫雨, 贾春燕. 铝酸锂纳米棒改性固态电解质的制备及电化学性能研究[J]. 无机盐工业, 2023, 55(8): 65-70. |
[8] | 张瑞, 王正豪, 陈良, 郭孝东, 罗冬梅. 工业钛液合成钛酸钠负极及其储钠性能[J]. 无机盐工业, 2023, 55(12): 66-73. |
[9] | 彭晨熹, 刘军. 钠离子电池层状过渡金属氧化物正极材料的研究进展[J]. 无机盐工业, 2023, 55(10): 1-12. |
[10] | 马存双,万延华,许永开,陈卫华. 超薄氮硫掺杂碳包覆二硫化铁的制备及储钠性能[J]. 无机盐工业, 2022, 54(6): 55-60. |
[11] | 东鹏,周英杰,侯敏杰,杨冬荣,戴永年,梁风. 钠离子电池正极材料Na3V2(PO4)3研究进展[J]. 无机盐工业, 2022, 54(5): 1-10. |
[12] | 周彬,白小洁,刘昊,廖立兵. 二维MXene材料——Ti3C2Tx在钠离子电池中的研究进展[J]. 无机盐工业, 2021, 53(8): 21-26. |
[13] | 包科杰,路凌然. 新能源汽车电池负极材料的制备与性能研究[J]. 无机盐工业, 2021, 53(3): 54-59. |
[14] | 卢超,李明明,吴小强,安旭光,孔清泉,王小炼. 固态无机电解质Li7La3Zr2O12的改性研究进展[J]. 无机盐工业, 2021, 53(11): 10-16. |
[15] | 闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020, 52(7): 22-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|