无机盐工业 ›› 2021, Vol. 53 ›› Issue (12): 14-20.doi: 10.19964/j.issn.1006-4990.2021-0622
收稿日期:
2021-10-19
出版日期:
2021-12-10
发布日期:
2021-12-16
作者简介:
陈婧娟(2000— ),女,硕士,研究方向为Cu基催化剂的制备及其催化二氧化碳电还原;E-mail: 基金资助:
CHEN Jingjuan1(),LÜ Lin1,2(
),WAN Houzhao1,2,WANG Hao1,2(
)
Received:
2021-10-19
Published:
2021-12-10
Online:
2021-12-16
摘要:
因电催化二氧化碳还原反应(CO2 reduction reaction,CO2RR)助于降低大气二氧化碳浓度缓解环境问题,还可以生产高附加值化学品,引起了广泛关注。甲酸盐作为二氧化碳电还原的重要产物之一,在化工、燃料电池等领域广泛应用。铜基硫族化合物(CuxS)由于价格便宜、催化性能优异等优点有着广阔的应用前景,基于此研究者们在纳米结构调控、电解液优化和反应气组分控制等方面展开了大量研究以提升其在电催化CO2RR中的催化活性和甲酸盐产物选择性。主要从催化剂结构设计、催化影响要素、催化反应机理等多角度综述了近期CuxS在电催化CO2RR领域的研究进展,提出了CuxS在CO2RR领域中主要面临的挑战;展望了CuxS族催化剂作为高活性、高稳定性二氧化碳电还原催化剂的发展前景。
中图分类号:
陈婧娟,吕琳,万厚钊,王浩. 铜基硫族化合物电催化二氧化碳还原制甲酸盐的研究进展[J]. 无机盐工业, 2021, 53(12): 14-20.
CHEN Jingjuan,LÜ Lin,WAN Houzhao,WANG Hao. Recent progress on Cu-based chalcogenides for electrocatalytic carbon dioxide reduction to formate[J]. Inorganic Chemicals Industry, 2021, 53(12): 14-20.
表1
不同理论还原电位下CO2电还原的可能路径及其产物[11]
可能的反应途径 | 电极电位 (vs.SHE)/V |
---|---|
CO2(g)+4H++4e-→C(s)+2H2O(l) | 0.210 |
CO2(g)+2H2O(l)+4e-→C(s)+4OH- | -0.627 |
CO2(g)+2H++2e-→HCOOH(l) | -0.250 |
CO2(g)+H2O(l)+2e-→HCOO-(aq)+OH- | -1.078 |
CO2(g)+2H++2e-→CO(g)+H2O(l) | -0.106 |
CO2(g)+H2O(l)+2e-→CO(g)+2OH- | -0.934 |
CO2(g)+4H++4e-→CH2O(l)+H2O | -0.070 |
CO2(g)+3H2O(l)+4e-→CH2O+4OH- | -0.898 |
CO2(g)+6H++6e-→CH3OH(l)+H2O | 0.016 |
CO2(g)+5H2O(l)+6e-→CH3OH(l)+6OH- | -0.812 |
CO2(g)+8H++8e-→CH4(g)+2H2O | 0.169 |
CO2(g)+6H2O(l)+8e-→CH4(g)+8OH- | -0.659 |
2CO2(g)+2H++2e-→H2C2O4(aq) | -0.500 |
2CO2(g)+2e-→C2O42-(aq) | -0.590 |
2CO2(g)+12H++12e-→CH2CH2(g)+4H2O | 0.064 |
2CO2(g)+8H2O(l)+12e-→CH2CH2(g)+12OH- | -0.764 |
2CO2(g)+12H++12e-→CH3CH2OH(l)+3H2O(l) | 0.084 |
2CO2(g)+9H2O(l)+12e-→CH3CH2OH(l)+12OH- | -0.744 |
[1] | SPERRY J S, VENTURASM D, TODD H N, et al. The impact of ris-ing CO2 and acclimation on the response of US forests to global war-ming[J]. Proceedings of the National Academy of Sciences, 2019, 116(51):25734-25744. |
[2] | PETER S C. Reduction of CO2 to chemicals and fuels:A solution to global warming and energy crisis[J]. ACS Energy Letters, 2018, 3(7):1557-1561. |
[3] | 王建行, 赵颖颖, 李佳慧, 等. 二氧化碳的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4):12-17. |
[4] | 李书文, 周严, 汪铁林. BiVO4/rGO复合物的制备及其光催化还原CO2研究[J]. 无机盐工业, 2020, 51(11):82-87. |
[5] | APPEL A M, BERCAW J E, BOCARSLY A B, et al. Frontiers,op-portunities,and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8):6621-6658. |
[6] | GALADIMA A, MURAZA O. Catalytic thermal conversion of CO2 into fuels:Perspective and challenges[J]. Renewable and Sustain-able Energy Reviews, 2019, 115.Doi: 10.1016/j.rser.2019.109333. |
[7] | 常若鹏, 胡旭, 贺雷, 等. 络合物法制备镍-氮共掺杂炭基二氧化碳电催化剂[J]. 无机盐工业, 2021, 53(9):97-103. |
[8] | 胡旭, 董灵玉, 李文翠, 等. 光化学法制备过渡金属—氮共掺杂多孔炭基CO2电还原催化剂[J]. 无机盐工业, 2021, 53(6):8-13. |
[9] | KIBRIA M G, EDWARDS J P, GABARDO C M, et al. Electroche-mical CO2 reduction into chemical feedstocks:From mechanistic electrocatalysis models to system design[J]. Advanced Materials, 2019, 31(31).Doi: 10.1002/adma.201807166. |
[10] | ZHANG W, HU Y, MA L, et al. Progress and perspective of electro-catalytic CO2 reduction for renewable carbonaceous fuels and che-micals[J]. Advanced Science, 2018, 5(1).Doi: 10.1002/advs.201700275. |
[11] | 景维云, 毛庆, 石越, 等. CO2电催化还原制烃类产物的研究进展[J]. 化工进展, 2017, 36(6):2150-2157. |
[12] | FINN C, SCHNITTGER S, YELLOWLEES L J, et al. Molecular approaches to the electrochemical reduction of carbon dioxide[J]. Chemical Communications, 2012, 48(10):1392-1399. |
[13] | FRANCKE R, SCHILLE B, ROEMELT M. Homogeneously catalyz-ed electroreduction of carbon dioxide-methods,mechanisms,and catalysts[J]. Chemical Reviews, 2018, 118(9):4631-4701. |
[14] | AN L, CHEN R. Direct formate fuel cells:A review[J]. Journal of Power Sources, 2016, 320:127-139. |
[15] | GRUBEL K, JEONG H, YOON C W, et al. Challenges and oppor-tunities for using formate to store,transport,and use hydrogen[J]. Journal of Energy Chemistry, 2020, 41:216-224. |
[16] | ZHENG X, DE LUNA P, DE ARQUER F P G, et al. Sulfur-modu-lated tin sites enable highly selective electrochemical reduction of CO2 to formate[J]. Joule, 2017, 1(4):794-805. |
[17] | ZHANG S, KANG P, MEYER T J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate[J]. Journal of the American Chemical Society, 2014, 136(5):1734-1737. |
[18] | WU D, WANG X, FU X-Z, et al. Ultrasmall Bi nanoparticles con-fined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction[J]. Applied Catalysis B:Environmental, 2021, 284.Doi: 10.1016/j.apcatb.2020.119723. |
[19] | DENG P, YANG F, WANG Z, et al. Metal-organic framework-de-rived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate[J]. Angewandte Chemie International Edition, 2020, 59(27):10807-10813. |
[20] | ZHANG A, LIANG Y, LI H, et al. In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate[J]. Nano Letters, 2020, 20(11):8229-8235. |
[21] | CHI L-P, NIU Z-Z, ZHANG X-L, et al. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation[J]. Nature Communications, 2021, 12(1):1-9. |
[22] | CHATTERJEE S, GRIEGO C, HART J L, et al. Free standing nano-porous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO2 to formate[J]. ACS Catal-ysis, 2019, 9(6):5290-5301. |
[23] | LV H, LV F, QIN H, et al. Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemi-cal CO2 reduction[J]. CCS Chemistry, 2021, 3:1435-1444. |
[24] | YANG W, CHEN S, REN W, et al. Nanostructured amalgams with tuneable silver-mercury bonding sites for selective electroreduc-tion of carbon dioxide into formate and carbon monoxide[J]. Jour-nal of Materials Chemistry A, 2019, 7(26):15907-15912. |
[25] | ARROCHA-ARCOS A, CERVANTES-ALCALÁR, HUERTA-MIRANDA G, et al. Electrochemical reduction of bicarbonate to formate with silver nanoparticles and silver nanoclusters supported on multiwalled carbon nanotubes[J]. Electrochimica Acta, 2017, 246:1082-1087. |
[26] | LV L, HE X, WANG J, et al. Charge localization to optimize reac-tant adsorption on KCu7S4/CuO interfacial structure toward selec-tive CO2 electroreduction[J]. Applied Catalysis B:Environmental, 2021, 298.Doi: 10.1016/j.apcatb.2021.120531. |
[27] | CHEN Y, CHEN K, FU J, et al. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction[J]. Nano Materials Science, 2020, 2(3):235-247. |
[28] | HUANG Y, DENG Y, HANDOKO A D, et al. Rational design of sulfur-doped copper catalysts for the selective electroreduction of carbon dioxide to formate[J]. ChemSusChem, 2018, 11(1):320-326. |
[29] | LI D, HUANG L, LIU T, et al. Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspher-es[J]. Chemosphere, 2019, 237.Doi: 10.1016/j.chemosphere.2019.124527. |
[30] | LI D, LIU T, YAN Z, et al. MOF-derived Cu2O/Cu nanospheres an-chored in nitrogen-doped hollow porous carbon framework for in-creasing the selectivity and activity of electrochemical CO2-to-formate conversion[J]. ACS Applied Materials & Interfaces, 2020, 12(6):7030-7037. |
[31] | ZHAO Z, PENG X, LIU X, et al. Efficient and stable electroreduc-tion of CO2 to CH4 on CuS nanosheet arrays[J]. Journal of Materials Chemistry A, 2017, 5(38):20239-20243. |
[32] | PENG C, LUO G, ZHANG J, et al. Double sulfur vacancies by lithi-um tuning enhance CO2 electroreduction to n-propanol[J]. Nature Communications, 2021, 12(1):1-8. |
[33] | ZHANG X, SA R, ZHOU F, et al. Metal-organic framework-derived CuS nanocages for selective CO2 electroreduction to formate[J]. CCS Chemistry, 2021, 3:199-207. |
[34] | SHAO P, CI S, YI L, et al. Hollow CuS microcube electrocatalysts for CO2 reduction reaction[J]. ChemElectroChem, 2017, 4(10):2593-2598. |
[35] | YANG D, ZUO S, YANG H, et al. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires[J]. Advanced Energy Materials, 2021, 11(16).Doi: 10.1002/aenm.202100272. |
[36] | SHINAGAWA T, LARRAZÁBAL G O, MARTÍN A J, et al. Sulfur-modified copper catalysts for the electrochemical reduction of car-bon dioxide to formate[J]. ACS Catalysis, 2018, 8(2):837-844. |
[37] | CHEN J, TU Y, ZOU Y, et al. Morphology and composition-contro-llable synjournal of copper sulfide nanocrystals for electrochemical reduction of CO2 to HCOOH[J]. Materials Letters, 2021, 284. Doi: 10.1016/j.matlet.2020.128919. |
[38] | LV L, LI Z, WAN H, et al. Achieving low-energy consumption wa-ter-to-hydrogen conversion via urea electrolysis over a bifunctional electrode of hierarchical cuprous sulfide@nickel selenide nanoarrays[J]. Journal of Colloid and Interface Science, 2021, 592:13-21. |
[39] | AN L, LI Y, LUO M, et al. Atomic-level coupled interfaces and la-ttice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries[J]. Advanced Functional Materials, 2017, 27(42).Doi: 10.1002/adfm.201703779. |
[40] | LIANG R, SHU C, HU A, et al. Interface engineering induced se-lenide lattice distortion boosting catalytic activity of heterogeneous CoSe2@NiSe2 for lithium-oxygen battery[J]. Chemical Engineer-ing Journal, 2020, 393.Doi: 10.1016/j.cej.2020.124592. |
[41] | WANG S, KOU T, VARLEY J B, et al. Cu2O/CuS nanocomposites show excellent selectivity and stability for formate generation via electrochemical reduction of carbon dioxide[J]. ACS Materials Letters, 2020, 3(1):100-109. |
[42] | WANG W, WANG Z, YANG R, et al. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window[J]. Angewandte Chemie International Edition, 2021, 60(42):22940-22947. |
[43] | BANERJEE S, ZHANG Z-Q, HALL A S, et al. Surfactant perturba-tion of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catalysis, 2020, 10(17):9907-9914. |
[44] | ZHONG Y, XU Y, MA J, et al. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assem-bly[J]. Angewandte Chemie International Edition, 2020, 59(43):19095-19101. |
[45] | WAKERLEY D, LAMAISON S, OZANAM F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface[J]. Nature Materials, 2019, 18(11):1222-1227. |
[46] | XING Z, HU L, RIPATTI D S, et al. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment[J]. Nature Communications, 2021, 12(1):1-11. |
[47] | GOLRU S S, BIDDINGER E J. Effect of anion in diluted imidazoli-um-based ionic liquid/buffer electrolytes for CO2 electroreduction on copper[J]. Electrochimica Acta, 2020, 361.Doi: 10.1016/j.elec-tacta.2020.136787. |
[48] | LI J, KUANG Y, MENG Y, et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high en-ergy conversion efficiency[J]. Journal of the American Chemical Society, 2020, 142(16):7276-7282. |
[49] | LIM J W, DONG W J, PARK J Y, et al. Spontaneously formed CuSx catalysts for selective and stable electrochemical reduction of in-dustrial CO2 gas to formate[J]. ACS Applied Materials & Interfac-es, 2020, 12(20):22891-22900. |
[50] | LUC W, KO B H, KATTEL S, et al. SO2-induced selectivity change in CO2 electroreduction[J]. Journal of the American Chemical Society, 2019, 141(25):9902-9909. |
[51] | WANG X, DE ARAUJO J F, JU W, et al. Mechanistic reaction path-ways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts[J]. Nature Na-notechnology, 2019, 14(11):1063-1070. |
[52] | HE M, LI C, ZHANG H, et al. Oxygen induced promotion of elec-trochemical reduction of CO2 via co-electrolysis[J]. Nature Com-munications, 2020, 11(1):1-10. |
[53] | LU X, JIANG Z, YUAN X, et al. A bio-inspired O2-tolerant cataly-tic CO2 reduction electrode[J]. Science Bulletin, 2019, 64(24):1890-1895. |
[54] | KO B H, HASA B, SHIN H, et al. The impact of nitrogen oxides on electrochemical carbon dioxide reduction[J]. Nature Communica-tions, 2020, 11(1):1-9. |
[55] | DENG Y, HUANG Y, REN D, et al. On the role of sulfur for the se-lective electrochemical reduction of CO2 to formate on CuSx cataly-sts[J]. ACS Applied Materials & Interfaces, 2018, 10(34):28572-28581. |
[56] | LIU D, LIU Y, LI M. Understanding how atomic sulfur controls the selectivity of the electroreduction of CO2 to formic acid on meta-llic Cu surfaces[J]. The Journal of Physical Chemistry C, 2020, 124(11):6145-6153. |
[57] | LIU S-Q, GAO M-R, FENG R-F, et al. Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO2 electro-reduction to formate[J]. ACS Catalysis, 2021, 11(12):7604-7612. |
[58] | DOU T, QIN Y, ZHANG F, et al. CuS nanosheet arrays for electro-chemical CO2 reduction with surface reconstruction and the effect on selective formation of formate[J]. ACS Applied Energy Materi-als, 2021, 4(5):4376-4384. |
[59] | PHILLIPS K R, KATAYAMA Y, HWANG J, et al. Sulfide-derived copper for electrochemical conversion of CO2 to formic acid[J]. The Journal of Physical Chemistry Letters, 2018, 9(15):4407-4412. |
[1] | 罗成玲, 范小凡. 微结构调控催化剂用于尿素氧化反应的研究进展[J]. 无机盐工业, 2025, 57(2): 26-35. |
[2] | 王挺, 章文文, 毛庆, 吕丽, 刘长珍. 二氧化碳电还原制乙醇催化体系与材料研究进展[J]. 无机盐工业, 2024, 56(7): 1-10. |
[3] | 谢江, 郭戈, 邱洁. 负载型活性炭粒子三维电极法处理亚甲基蓝模拟废水[J]. 无机盐工业, 2024, 56(5): 78-86. |
[4] | 周旋, 李梦锐, 陈一尘, 樊辉强, 王宾, 袁刚. 镍基磷化物复合材料在催化电解水析氢性能提升方面的研究进展[J]. 无机盐工业, 2024, 56(4): 8-15. |
[5] | 陈星亮, 范文娟, 常会, 黄海平, 蒋志强. Fe3+协同Ni基金属-有机框架提升电催化析氧反应活性的研究[J]. 无机盐工业, 2024, 56(2): 152-158. |
[6] | 武鲁明, 于海斌, 王亚权. 多孔碳材料的制备及其金属磷化物氧还原性能研究[J]. 无机盐工业, 2023, 55(4): 104-110. |
[7] | 马靖文,王军,李响. 钌基碱性电解水制氢催化剂研究进展[J]. 无机盐工业, 2022, 54(4): 69-73. |
[8] | 郑杨子,金明尚. 燃料电池铂基核壳结构催化剂性能提升策略[J]. 无机盐工业, 2022, 54(11): 1-7. |
[9] | 常若鹏,胡旭,贺雷,郝广平. 络合物法制备镍-氮共掺杂炭基二氧化碳电催化剂[J]. 无机盐工业, 2021, 53(9): 97-103. |
[10] | 李雪莲,吴东恩,邵学兰,黄德友,蒯贤芬. DMFC阳极催化剂用GRQD-NiCo2O4复合物的制备与电催化活性分析[J]. 无机盐工业, 2021, 53(7): 109-112. |
[11] | 胡旭,董灵玉,李文翠,郝广平. 光化学法制备过渡金属-氮共掺杂多孔炭基CO2电还原催化剂[J]. 无机盐工业, 2021, 53(6): 8-13. |
[12] | 曹茂启,龙成梅,孙赛兰,徐平,吴大旺. 氧缺陷三氧化钨纳米线阵列高效电催化合成氨[J]. 无机盐工业, 2021, 53(5): 100-104. |
[13] | 杨环环,喻彬璐,王佳宏,喻学锋. 二维黑磷的制备、表面功能化与光电催化[J]. 无机盐工业, 2021, 53(5): 13-20. |
[14] | 陈昆峰, 马天宇, 王安良, 张一波, 薛冬峰. 双碳目标下的多尺度稀土新材料研究[J]. 无机盐工业, 2021, 53(12): 1-13. |
[15] | 李明,杨岩,张黎君. 掺杂铁的二氧化铅电极的制备及性能研究[J]. 无机盐工业, 2021, 53(11): 66-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|