[1] |
Ren Wenhao, Zhao Chuan. Paths towards enhanced electrochemical CO2 reduction[J]. National Science Review, 2020, 7(1):7-9.
|
[2] |
王建行, 赵颖颖, 李佳慧, 等. 二氧化碳的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4):12-17.
|
[3] |
He Qun, Liu Daobin, Lee Ji Hoon, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts[J]. Angewandte Chemie-International Edition, 2020, 59(8):3033-3037.
|
[4] |
Bai Xiaofang, Chen Wei, Zhao Chengcheng, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017, 56(40):12219-12223.
|
[5] |
Jiang Kun, Siahrostami Samira, Akey Austin J, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynjournal[J]. Chem, 2017, 3(6):950-960.
|
[6] |
Yang Hong Bin, Hung Sung-Fu, Liu Song, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2):140-147.
|
[7] |
Hu Xinming, Hval Halvor Hϕen, Bjerglund Emil Tveden, et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts[J]. ACS Catalysis, 2018, 8(7):6255-6264.
|
[8] |
Li Xiaogang, Bi Wentuan, Chen Minglong, et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(42):14889-14892.
|
[9] |
Guo Chen, Zhang Tian, Deng Xiangxuan, et al. Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron-doped graphitic carbon nitride:A DFT study[J]. ChemSusChem, 2019, 12(23):5126-5132.
|
[10] |
Zhao Changming, Dai Xinyao, Yao Tao, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society, 2017, 139(24):8078-8081.
|
[11] |
Pan Fuping, Zhang Hanguang, Liu Kexi, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts[J]. ACS Catalysis, 2018, 8(4):3116-3122.
|
[12] |
Huan Tran Ngoc, Ranjbar Nastaran, Rousse Gwenaëlle, et al. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials:A structure-selectivity study[J]. ACS Catalysis, 2017, 7(3):1520-1525.
|
[13] |
Ju Wen, Bagger Alexander, Hao Guang-Ping, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8(1).Doi: 10.1038/s41467-017-01035-z.
|
[14] |
Cheng Yi, Zhao Shiyong, Li Haobo, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B:Environmental, 2019, 243:294-303.
|
[15] |
Ma Shuangshuang, Su Panpan, Huang Wenjuan, et al. Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO2 reduction[J]. Chem Cat Chem, 2019, 11(24):6092-6098.
|
[16] |
Lu Chenbao, Yang Jian, Wei Shice, et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for car-bon dioxide conversion[J]. Advanced Functional Materials, 2019, 29(10).Doi: 10.1002/adfm.201806884.
|
[17] |
Wu Qiao, Xie Rui-Kuan, Mao Min-Jie, et al. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2[J]. ACS Energy Letters, 2020, 5(3):1005-1012.
|
[18] |
Alahmari Fatimah, Davaasuren Bambar, Emwas Abdul-Hamid, et al. Tris(ethylenediamine)nickel(Ⅱ) thio-hydroxogermanate mono-hydrate:Synjournal,crystal structure,1H NMR,EPR,optical and magnetic properties[J]. Inorganica Chimica Acta, 2019, 488:145-151.
|
[19] |
朱红林, 李文英, 黎挺挺, 等. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7):939-953.
|