无机盐工业 ›› 2021, Vol. 53 ›› Issue (12): 1-13.doi: 10.19964/j.issn.1006-4990.2021-0635
• 无机新型材料——碳资源转化与利用 • 下一篇
收稿日期:
2021-10-21
出版日期:
2021-12-10
发布日期:
2021-12-16
作者简介:
陈昆峰(1987— ),男,教授,研究方向为多尺度晶体材料研究;E-mail: 基金资助:
CHEN Kunfeng1(),MA Tianyu2,WANG Anliang3,Zhang Yibo4,XUE Dongfeng5()
Received:
2021-10-21
Published:
2021-12-10
Online:
2021-12-16
摘要:
“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”是中国对国际社会的庄重承诺。材料是实现碳减排技术的重要物质基础。通过介绍多尺度稀土新材料在能源存储、废气/尾气催化、电催化、永磁电机等领域应用的最新研究进展,分析了多尺度稀土新材料在攻坚双碳目标中发挥的作用。稀土是重要的“工业维生素”,着重介绍了稀土在原子离子、纳米微米、体块等尺度上对功能材料展现的独特作用。在量子材料方面,分析了稀土强关联固态电解质、稀土超导材料及稀土阻挫材料的最新研究进展。希望新型稀土功能材料的开发在减少碳排放方面起到促进作用。
中图分类号:
陈昆峰,马天宇,王安良,张一波,薛冬峰. 双碳目标下的多尺度稀土新材料研究[J]. 无机盐工业, 2021, 53(12): 1-13.
CHEN Kunfeng,MA Tianyu,WANG Anliang,Zhang Yibo,XUE Dongfeng. Study on multiscale rare earths new materials for the dual carbon target[J]. Inorganic Chemicals Industry, 2021, 53(12): 1-13.
[1] | 张玉卓. 为世界可持续发展贡献中国力量,以高水平科技自立自强助力“双碳”目标实现[J]. 人民论坛, 2021(27):6-8. |
[2] | 欧阳志远, 史作廷, 石敏俊, 等. “碳达峰碳中和”:挑战与对策[J]. 河北经贸大学学报, 2021, 42(5):1-11. |
[3] |
CHEISSON T, SCHELTER E J. Rare earth elements:Mendeleev′s bane,modern marvels[J]. Science, 2019, 363(6426):489-493.
doi: 10.1126/science.aau7628 |
[4] |
CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]Nature Reviews Materials, 2016, 1(4).Doi: 10.1038/natrevmats.2016.13.
doi: 10.1038/natrevmats.2016.13 |
[5] | 陈昆峰, 李宫, 梁晰童, 等. 稀土改性电化学储能电极材料的研究进展[J]. 硅酸盐学报, 2016, 44(8):1241-1247. |
[6] |
XUE D F, SUN C T, CHEN X Y. Hybridized valence electrons of 4f0-145d0-16s2:The chemical bonding nature of rare earth elements[J]. Journal of Rare Earths, 2017, 35(8):837-843.
doi: 10.1016/S1002-0721(17)60984-0 |
[7] |
XUE D F, SUN C T, CHEN X Y. Hybridization:A chemical bonding nature of atoms[J]. Chinese Journal of Chemistry, 2017, 35(9):1452-1458.
doi: 10.1002/cjoc.v35.9 |
[8] | XUE D F, SUN C T. 4f chemistry towards rare earth materials science and engineering[J]. Science China:Technological Science, 2017, 60(11):1767-1768. |
[9] |
LIU C F, NEALE Z G, CAO G Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today, 2016, 19(2):109-123.
doi: 10.1016/j.mattod.2015.10.009 |
[10] |
PATEL R L, XIE H, PARK J, et al. Significant capacity and cyclelife improvement of lithium-ion batteries through ultrathin conduc-tive film stabilized cathode particles[J]. Advanced Materials In-terfaces, 2015, 3(13).Doi: 10.1002/admi.201600525.
doi: 10.1002/admi.201600525 |
[11] | SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Na-ture Materials, 2013, 12(9):827-835. |
[12] |
MCCALLA M, ABAKUMOV A M, SAUBANERE M, et al. Visual-ization of O—O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015, 350(6267):1516-1521.
doi: 10.1126/science.aac8260 |
[13] |
WANG H, ZHANG J J, HUANG X D, et al. Half-metallicity in sin-gle-layered manganese dioxide nanosheets by defect engineer-ing[J]. Angewandte Chemie:International Edition, 2015, 54(4):1195-1199.
doi: 10.1002/anie.201410031 |
[14] |
LIU Q, SU X, LEI D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3(11):936-943.
doi: 10.1038/s41560-018-0180-6 |
[15] |
OUMELLAL Y, ROUGIER A, AYMARD L, et al. Metal hydrides for lithium-ion batteries[J]. Nature Materials, 2008, 7(11):916-921.
doi: 10.1038/nmat2288 |
[16] |
ZHENG X Y, YANG C K, CHANG X H, et al. Synergism of rare earth trihydrides and graphite in lithium storage:Evidence of hy-drogen-enhanced lithiation[J]. Advanced Materials, 2018, 30(3).Doi: 10.1002/adma.201704353.
doi: 10.1002/adma.201704353 |
[17] |
DAVIS V K, BATES C M, OMICHI K, et al. Room-temperature cy-cling of metal fluoride electrodes:Liquid electrolytes for high-en-ergy fluoride ion cells[J]. Science, 2018, 362(6419).Doi: 10.1126/science.aat7070.
doi: 10.1126/science.aat7070 |
[18] |
REDDY M A, FICHTNER M. Batteries based on fluoride shuttle[J]. Journal of Materials Chemistry, 2011, 21(43):17059-17062.
doi: 10.1039/c1jm13535j |
[19] |
THIEU D T, HAMMAD M, BHATIA, H, et al. CuF2 as reversible cathode for fluoride ion batteries[J]. Advanced Functional Materials, 2017, 27(31).Doi: 10.1002/adfm.201701051.
doi: 10.1002/adfm.201701051 |
[20] |
MANTHIRAM A, YU X W, WANG S F, et al. Lithium battery che-mistries enabled by solid-state electrolytes[J]. Nature Reviews Ma-terials, 2017, 2(4).Doi: 10.1038/natrevmats.2016.103.
doi: 10.1038/natrevmats.2016.103 |
[21] |
ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-ytpe all-solid-state batteries[J]. Advanced Materials, 2018, 30(44). Doi: 10.1002/adma.201803075.
doi: 10.1002/adma.201803075 |
[22] | 詹望成, 郭耘, 龚学庆, 等. 二氧化铈表面氧的活化及对氧化反应的催化作用[J]. 中国科学:化学, 2012, 42(4):433-445. |
[23] |
LI F, ZHANG Y B, XIAO D H, et al. Hydrothermal method prepar-ed Ce-P-O catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range[J]. ChemCatChem, 2010, 2(11):1416-1419.
doi: 10.1002/cctc.201000179 |
[24] | 张昭良, 何洪, 赵震. 汽车尾气三效催化剂研究和应用40年[J]. 环境化学, 2021, 40(7):1937-1944. |
[25] | 张安文. 碳中和为稀土应用带来重大发展机遇[J]. 稀土信息, 2021(5):8-11. |
[26] | 苏文清. 中国稀土产业经济分析与政策研究[M]. 北京: 中国财政经济出版社, 2009. |
[27] | 新华社. 我国研制出时速400公里“永磁高铁”电机[N/OL]. 人民日报,(2019-09-18)[2021-10-21]. https://baijiahao.baidu.com/s?id=1644985264038451878& wfr=spider&for=pc . |
[28] | GUTFLEISCH O. High-temperature samarium cobalt permanent magnets[M]//LIU J,FULLERTON E,GUTFLEISCH O,SELLMYER D.Nanoscale Magnetic Materials and Applications.Boston:Springer, 2009:337-372. |
[29] |
XIONG X, OHKUBO T, KOYAMA T, et al. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe[J]. Acta Materialia, 2004, 52:737-748.
doi: 10.1016/j.actamat.2003.10.015 |
[30] |
STRNAT K J. The hard-magnetic properties of rare earth transition metal alloys[J]. IEEE Transactions on Magnetics, 1972, 8(3):511-516.
doi: 10.1109/TMAG.1972.1067368 |
[31] |
TANG W, ZHANG Y, HADJIPANAYIS G C. Microstructure and magnetic properties of Sm(CobalFexCu0.128Zr0.02)7.0 magnets with Fe substitution[J]. Journal of Magnetism and Magnetic Materials, 2000, 221(3):268-272.
doi: 10.1016/S0304-8853(00)00508-4 |
[32] |
DUERRSCHNABEL M, YI M, UESTUENER K, et al. Atomic struc-ture and domain wall pinning in samarium-cobalt-based permanent magnets[J]. Nature Communications, 2017, 8(54):1-7.
doi: 10.1038/s41467-016-0009-6 |
[33] |
SUN W, ZHU M, FANG Y, et al. Magnetic properties and microst-ructures of high-performance Sm2Co17 based alloy[J]. Journal of Magnetism and Magnetic Materials, 2015, 378:214-216.
doi: 10.1016/j.jmmm.2014.11.026 |
[34] | CAO J, ZHANG T L, LIU J H, et al. Grain boundary optimization induced substantial squareness enhancement and high performan-ce in iron-rich Sm-Co-Fe-Cu-Zr magnets[J]. Journal of Materials Science & Technology, 2021, 85:56-61. |
[35] |
HORIUCHI Y, HAGIWARA M, ENDO M, et al. Influence of inter-mediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnets[J]. Journal of Applied Physics, 2015, 117(17).Doi: 10.1063/1.4906757.
doi: 10.1063/1.4906757 |
[36] |
CHEN H, WANG Y, YAO Y, et al. Attractive-domain-wall-pinning controlled Sm-Co magnets overcome the coercivity-remanence tra-de-off[J]. Acta Materialia, 2019, 164:196-206.
doi: 10.1016/j.actamat.2018.10.046 |
[37] |
WANG Y, YUE M, WU D, et al. Microstructure modification indu-ced giant coercivity enhancement in Sm(CoFeCuZr)z permanent magnets[J]. Scripta Materialia, 2018, 146:231-235.
doi: 10.1016/j.scriptamat.2017.12.007 |
[38] |
YAN G, LIU Z, XIA W, et al. Grain boundary modification induced magnetization reversal process and giant coercivity enhancement in 2:17 type SmCo magnets[J]. Journal of Alloys and Compounds, 2019, 785:429-435.
doi: 10.1016/j.jallcom.2019.01.217 |
[39] |
SONG K, FANG Y, SUN W, et al. Microstructural analysis during the step-cooling annealing of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 anisotropic sintered magnets[J]. IEEE Transactions on Magnetics, 2017, 53(11):1-4.
doi: 10.1109/TMAG.2018.2792846 |
[40] | HORIUCHI Y, HAGIWARA M, OKAMOTO K, et al. Effect of pre-aging treatment on the microstructure and magnetic properties of Sm(Co,Fe,Cu,Zr)7.8 sintered magnets[J]. Materials Transactio-ns, 2014, 55(3):482-488. |
[41] |
ZHOU X L, LIU Y, SONG X, et al. Enhanced magnetic properties of Fe-rich Sm-Co-Fe-Cu-Zr magnets by compressive stress-ag-ing[J]. Materialia, 2021, 20.Doi: 10.1016/j.mtla.2021.101230.
doi: 10.1016/j.mtla.2021.101230 |
[42] | ZHOU X L, YUAN T, MA T Y. Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging[J]. Journal of Materials Science & Technology, 2022, 106:70-76. |
[43] |
SAGAWA M, FUJIMURA S, TOGAWA N, et al. New material for permanent-magnets on a base of Nd and Fe[J]. Journal of Applied Physics, 1984, 55(6):2083-2087.
doi: 10.1063/1.333572 |
[44] |
YAN M, JIN J Y, MA T Y. Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets[J]. Chinese Physics B, 2019, 28(7).Doi: 10.1088/1674-1056/28/7/077507.
doi: 10.1088/1674-1056/28/7/077507 |
[45] |
HERBST J F. R2Fe14B materials:Intrinsic properties and techno-logical aspects[J]. Reviews of Modern Physics, 1991, 63(4):819-898.
doi: 10.1103/RevModPhys.63.819 |
[46] | UNE Y, SAGAWA M. Development and prospect of the Nd-Fe-B sintering magnets[C]//Proceeding of 21st International Workshop on REPM.Slovenia, 2010:183-193. |
[47] |
SEPEHRI-AMIN H, UNE Y, OHKUBO T, et al. Microstructure of fine-grained Nd-Fe-B sintered magnets with high coercivity[J]. Scripta Materialia, 2011, 65(5):396-399.
doi: 10.1016/j.scriptamat.2011.05.006 |
[48] | PARK K T, HIRAGA K, SAGAWA M. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets[C]//Proceedings of the sixteenth international workshop on rare-earth magnets and their applications.Sendai, 2000:257-264. |
[49] | LIU Z W, HE J Y, ZHOU Q, et al. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets[J]. Journal of Materials Science & Technology, 2022, 98:51-61. |
[50] |
MA T Y, WU B, ZHANG Y J, et al. Enhanced coercivity of Nd-Ce-Fe-B sintered magnets by adding(Nd,Pr)-H powders[J]. Journal of Alloys and Compounds, 2017, 721:1-7.
doi: 10.1016/j.jallcom.2017.05.257 |
[51] | ZHU M G, LI W, WANG J D, et al. Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method[J]. IEEE Transactions on Magnetics, 2014, 50(1):1-4. |
[52] |
JIN J Y, MA T Y, ZHANG Y J, et al. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit:Solution to global rare earth criticality[J]. Scientific Reports, 2016, 6.Doi: 10.1038/srep32200.
doi: 10.1038/srep32200 |
[53] |
ZHANG Y J, MA T Y, JIN J Y, et al. Effects of REFe2 on microstruc-ture and magnetic properties of Nd-Ce-Fe-B sintered magnets[J]. Acta Materialia, 2017, 128:22-30.
doi: 10.1016/j.actamat.2017.02.002 |
[54] |
MA T Y, YAN M, WU K Y, et al. Grain boundary restructuring of multi-main-phase Nd-Ce-Fe-B sintered magnets with Nd hydri-des[J]. Acta Materialia, 2018, 142:18-28.
doi: 10.1016/j.actamat.2017.09.045 |
[55] |
ZHANG Y J, MA T Y, YAN M, et al. Post-sinter annealing influen-ces on coercivity of multi-main-phase Nd-Ce-Fe-B magnets[J]. Acta Materialia, 2018, 146:97-105.
doi: 10.1016/j.actamat.2017.12.027 |
[56] |
LIU D, ZHAO T Y, LI R, et al. Micromagnetic simulation of the in-fluence of grain boundary on cerium substituted Nd-Fe-B magnets[J]. AIP Advances, 2017, 7(5).Doi: 10.1063/1.4972803.
doi: 10.1063/1.4972803 |
[57] |
FAN X, GUO S, CHEN K, et al. Tuning Ce distribution for high per-formance Nd-Ce-Fe-B sintered magnets[J]. Journal of Magnetism and Magnetic Materials, 2016, 419:394-399.
doi: 10.1016/j.jmmm.2016.06.048 |
[58] |
MA Q, ZHU J T, ZHANG X F, et al. Achievement of high perfor-mance of sintered R-Fe-B magnets based on misch metal doped with PrNd nanoparticles[J]. Rare Metals, 2018, 37(3):237-242.
doi: 10.1007/s12598-017-0887-8 |
[59] |
JIN J Y, YAN M, LIU Y S, et al. Attaining high magnetic perfor-mance in as-sintered multi-main-phase Nd-La-Ce-Fe-B mag-nets:Toward skipping the post-sinter annealing treatment[J]. Acta Materialia, 2019, 169:248-259.
doi: 10.1016/j.actamat.2019.03.005 |
[60] |
NIU E, CHEN Z A, CHEN G A, et al. Achievement of high coerciv-ity in sintered R-Fe-B magnets based on misch-metal by dual alloy method[J]. Journal of Applied Physics, 2014, 115(11).Doi: 10.1063/1.4869202.
doi: 10.1063/1.4869202 |
[61] | JIANG Q Z, HE L K, LEI W K, et al. Microstructure and magnetic properties of multi-main-phase Ce-Fe-B spark plasma sintered magnets by dual alloy method[J]. Journal of Magnetism and Mag-netic Materials, 2019, 475:746-753. |
[62] |
ZHANG X F, LIU F, LIU Y L, et al. Recycling of sintered Nd-Fe-B magnets doped with PrNd nanoparticles[J]. Journal of Magnetics, 2015, 20(2):97-102.
doi: 10.4283/JMAG.2015.20.2.097 |
[63] |
ZHANG S, SAJI S E, YIN Z, et al. Rare-earth incorporated alloy catalysts:Synjournal,properties,and applications[J]. Advanced Ma-terials, 2021, 33(16).Doi: 10.1002/adma.202005988.
doi: 10.1002/adma.202005988 |
[64] |
SANTOS D M F, SEQUEIRA C A C, MACCIÒ D, et al. Platinum-rare earth electrodes for hydrogen evolution in alkaline water elec-trolysis[J]. International Journal of Hydrogen Energy, 2013, 38(8):3137-3145.
doi: 10.1016/j.ijhydene.2012.12.102 |
[65] |
ROSALBINO F, DELSANTE S, BORZONE G, et al. Electrocataly-tic behaviour of Co-Ni-R(R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline me-dium[J]. International Journal of Hydrogen Energy, 2008, 33(22):6696-6703.
doi: 10.1016/j.ijhydene.2008.07.125 |
[66] |
GHOBRIAL S, KIRK D, THORPE S. Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts[J]. Electrocatalysis, 2019, 10(3):243-252.
doi: 10.1007/s12678-019-00519-4 |
[67] |
ROSALBINO F, MACCIÒ D, ANGELINI E, et al. Electrocatalytic properties of Fe-R(R=rare earth metal) crystalline alloys as hydro-gen electrodes in alkaline water electrolysis[J]. Journal of Alloys and Compounds, 2005, 403(1/2):275-282.
doi: 10.1016/j.jallcom.2005.03.075 |
[68] |
YAO N, MENG R, WU F, et al. Oxygen-vacancy-induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolu-tion reactions[J]. Applied Catalysis B:Environmental, 2020, 277.Doi: 10.1016/j.apcatb.2020.119282.
doi: 10.1016/j.apcatb.2020.119282 |
[69] |
LI J Y, XIA Z M, XUE Q Y, et al. Insights into the interfacial Lewis acid-base pairs in CeO2-loaded CoS2 electrocatalysts for alkaline hydrogen evolution[J]. Small, 2021, 17(39).Doi: 10.1002/smll.202103018.
doi: 10.1002/smll.202103018 |
[70] |
GAO W, YAN M, CHEUNG H Y, et al. Modulating electronic struc-ture of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media[J]. Nano Energy, 2017, 38:290-296.
doi: 10.1016/j.nanoen.2017.06.002 |
[71] |
ZHOU W, SUNARSO J. Enhancing bi-functional electrocatalytic ac-tivity of perovskite by temperature shock:A case study of LaNiO3-δ[J]. The Journal of Physical Chemistry Letters, 2013, 4(17):2982-2988.
doi: 10.1021/jz401169n |
[72] |
ZHU Y L, LIN Q, HU Z W, et al. Self-assembled ruddlesden-pop-per/perovskite hybrid with lattice-oxygen activation as a superior oxygen evolution electrocatalyst[J]. Small, 2020, 16(20).Doi: 10.1002/smll.202001204.
doi: 10.1002/smll.202001204 |
[73] |
KIM J, SHIH P C, TSAO K C, et al. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media[J]. Journal of the American Chemical Society, 2017, 139(34):12076-12083.
doi: 10.1021/jacs.7b06808 |
[74] |
ZHANG N, WANG C, CHEN J, et al. Metal substitution steering electron correlations in pyrochlore ruthenates for efficient acidic water oxidation[J]. ACS Nano, 2021, 15(5):8537-8548.
doi: 10.1021/acsnano.1c00266 |
[75] | WANG H P, WANG J, PI Y C, et al. Double Perovskite LaFexNi1-xO3 nanorods enable efficient oxygen evolution electrocatalysis[J]. An-gewandte Chemie, 2019, 58(8):2316-2320. |
[76] |
DAI T Y, ZHANG X, SUN M Z, et al. Uncovering the promotion of CeO2/CoS1.97 heterostructure with specific spatial architectures on oxygen evolution reaction[J]. Advanced Materials, 2021, 33(42).Doi: 10.1002/adma.202102593.
doi: 10.1002/adma.202102593 |
[77] |
LIU Y, MA C, ZHANG Q, et al. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids[J]. Advanced Materials, 2019, 31(21).Doi: 10.1002/adma.201900062.
doi: 10.1002/adma.201900062 |
[78] |
HU Y, JENSEN J O, NORBY P, et al. Mechanistic insights into the synjournal of platinum-rare earth metal nanoalloys by a solid-state chemical route[J]. Chemistry of Materials, 2021, 33(2):535-546.
doi: 10.1021/acs.chemmater.0c03291 |
[79] |
COLIC V, BANDARENKA A S. Pt alloy electrocatalysts for the oxy gen reduction reaction:From model surfaces to nanostructured sy-stems[J]. ACS Catalysis, 2016, 6(8):5378-5385.
doi: 10.1021/acscatal.6b00997 |
[80] |
JOHANSSON T P, ULRIKKEHOLM E T, HERNANDEZ-FERNA-NDEZ P, et al. Pt skin versus Pt skeleton structures of Pt3Sc as elec-trocatalysts for oxygen reduction[J]. Topics in Catalysis, 2014, 57:245-254.
doi: 10.1007/s11244-013-0179-y |
[81] | YOO S J, HWANG S J, LEE J G, et al. Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt-La alloy electrodes[J]. Energy & Environmental Science, 2012, 5(6):7521-7525. |
[82] |
GREELEY J, STEPHENS I E L, BONDARENKO A S, et al. Alloys of platinum and early transition metals as oxygen reduction elec-trocatalysts[J]. Nature Chemistry, 2009, 1(7):552-556.
doi: 10.1038/nchem.367 |
[83] |
MALACRIDA P, ESCUDERO-ESCRIBANO M, VERDAGUER-CASADEVALL A, et al. Enhanced activity and stability of Pt-La and P-Ce alloys for oxygen electroreduction:The elucidation of the active surface phase[J]. Journal of Materials Chemistry A, 2014, 2(12):4234-4243.
doi: 10.1039/c3ta14574c |
[84] |
GARLYYEV B, POHL M B, COLIC V, et al. High oxygen reduc-tion reaction activity of Pt5Pr electrodes in acidic media[J]. Electrochemistry Communications, 2018, 88:10-14.
doi: 10.1016/j.elecom.2018.01.005 |
[85] |
LEE C H, PARK H N, LEE Y K, et al. Palladium on yttrium-em-bedded carbon nanofibers as electrocatalyst for oxygen reduction reaction in acidic media[J]. Electrochemistry Communications, 2019, 106.Doi: 10.1016/j.elecom.2019.106516.
doi: 10.1016/j.elecom.2019.106516 |
[86] |
CHEN J Y, LI Y, LU N, et al. Nanoporous PdCe bimetallic nanocu-bes with high catalytic activity towards ethanol electro-oxidation and the oxygen reduction reaction in alkaline media[J]. Journal of Materials Chemistry A, 2018, 6(46):23560-23568.
doi: 10.1039/C8TA08445A |
[87] |
XIANG S, WANG L, HUANG C C, et al. Concave cubic PtLa alloy nanocrystals with high-index facets:Controllable synjournal in deep eutectic solvents and their superior electrocatalytic properties for ethanol oxidation[J]. Journal of Power Sources, 2018, 399:422-428.
doi: 10.1016/j.jpowsour.2018.07.102 |
[88] |
NETO A O, WATANABE A Y, BRANDALISE M, et al. Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J]. Journal of Alloys and Compounds, 2009, 476(1/2):288-291.
doi: 10.1016/j.jallcom.2008.08.073 |
[89] | AN X S, FAN Y J, CHEN D J, et al. Enhanced activity of rare earth doped PtRu/C catalysts for methanol electro-oxidation[J]. Electro-chimica Acta, 2011, 56(24):8912-8918. |
[90] |
CORRADINI P G, PEREZ J. Activity,mechanism,and short-term stability evaluation of PtSn-rare earth/C electrocatalysts for the ethanol oxidation reaction[J]. Journal of Solid State Electrochemistry, 2018, 22(5):1525-1537.
doi: 10.1007/s10008-017-3793-y |
[91] |
ZHANG S, ZENG Z C, LI Q Q, et al. Lanthanide electronic pertur-bation in Pt-Ln(La,Ce,Pr and Nd) alloys for enhanced methanol oxidation reaction activity[J]. Energy & Environmental Science, 2021.Doi: 10.1039/d1ee02433g.
doi: 10.1039/d1ee02433g |
[92] |
TANG Z C, LU G X. High performance rare earth oxides LnOx (Ln=Sc,Y,La,Ce,Pr and Nd) modified Pt/C electrocatalysts for meth-anol electrooxidation[J]. Journal of Power Sources, 2006, 162(2):1067-1072.
doi: 10.1016/j.jpowsour.2006.07.052 |
[93] | PEERA S G, LEE T G, SAHU A K. Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactio-ns:An overview[J]. Sustainable Energy & Fuels, 2019, 3(8):1866-1891. |
[94] |
CHEONG S W. 5th anniversay of npj quantum materials[J]. Na-ture, 2021, 6(1).Doi: 10.1038/s41535-021-00366-x.
doi: 10.1038/s41535-021-00366-x |
[95] |
ZHANG Z, SCHWANZ D, NARAYANAN B, et al. Perovskite nic-kelates as electric-field sensors in salt water[J]. Nature, 2018, 553(7686):68-72.
doi: 10.1038/nature25008 |
[96] | SUN Y F, KOTIUGA M, LIM D, et al. Strongly correlated perovskite lithium ion shuttles[J]. Proceedings of National Academy of Sci-ences of the United States of America, 2018, 115(39):9672-9677. |
[97] | 霍知节. “揭秘”稀土超导材料[J]. 新材料产业, 2019, 12:65-71. |
[98] | 秦亚媛, 沈瑶, 陈钢, 等. 稀土元素三角格子体系中的阻挫磁性与量子涨落[J]. 物理, 2021, 50:454-462. |
[99] |
ZE H, ZHEN M, YUAN D L, et al. Evidence of the berezinskii-ko-sterlitz-thouless phase in a frustrated magnet[J]. Nature Commu-nications, 2020, 11.Doi: 10.1038/s41467-020-19380-x.
doi: 10.1038/s41467-020-19380-x |
[100] |
CHI Y, XU J, XUE H, et al. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behav-iors:Synjournal and characterization of Eu9MgS2B20O41[J]. Journal of The American Chemical Society, 2019, 141:9533-9536.
doi: 10.1021/jacs.9b04627 |
[1] | 史国强, 徐珂, 陈昆峰, 薛冬峰. 介尺度设计功能新材料研究进展[J]. 无机盐工业, 2023, 55(3): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|