无机盐工业 ›› 2021, Vol. 53 ›› Issue (12): 1-13.doi: 10.19964/j.issn.1006-4990.2021-0635
• 无机新型材料——碳资源转化与利用 • 下一篇
陈昆峰1(), 马天宇2, 王安良3, 张一波4, 薛冬峰5(
)
收稿日期:
2021-10-21
出版日期:
2021-12-10
发布日期:
2021-12-16
通讯作者:
薛冬峰(1969— ),男,教授,研究方向为多尺度功能无机材料;E-mail: df.xue@siat.ac.cn。作者简介:
陈昆峰(1987— ),男,教授,研究方向为多尺度晶体材料研究;E-mail: Kunfeng.Chen@sdu.edu.cn。
基金资助:
CHEN Kunfeng1(), MA Tianyu2, WANG Anliang3, Zhang Yibo4, XUE Dongfeng5(
)
Received:
2021-10-21
Published:
2021-12-10
Online:
2021-12-16
摘要:
“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”是中国对国际社会的庄重承诺。材料是实现碳减排技术的重要物质基础。通过介绍多尺度稀土新材料在能源存储、废气/尾气催化、电催化、永磁电机等领域应用的最新研究进展,分析了多尺度稀土新材料在攻坚双碳目标中发挥的作用。稀土是重要的“工业维生素”,着重介绍了稀土在原子离子、纳米微米、体块等尺度上对功能材料展现的独特作用。在量子材料方面,分析了稀土强关联固态电解质、稀土超导材料及稀土阻挫材料的最新研究进展。希望新型稀土功能材料的开发在减少碳排放方面起到促进作用。
中图分类号:
陈昆峰, 马天宇, 王安良, 张一波, 薛冬峰. 双碳目标下的多尺度稀土新材料研究[J]. 无机盐工业, 2021, 53(12): 1-13.
CHEN Kunfeng, MA Tianyu, WANG Anliang, Zhang Yibo, XUE Dongfeng. Study on multiscale rare earths new materials for the dual carbon target[J]. Inorganic Chemicals Industry, 2021, 53(12): 1-13.
[1] | 张玉卓. 为世界可持续发展贡献中国力量,以高水平科技自立自强助力“双碳”目标实现[J]. 人民论坛, 2021(27):6-8. |
[2] | 欧阳志远, 史作廷, 石敏俊, 等. “碳达峰碳中和”:挑战与对策[J]. 河北经贸大学学报, 2021,42(5):1-11. |
[3] | CHEISSON T, SCHELTER E J. Rare earth elements:Mendeleev′s bane,modern marvels[J]. Science, 2019,363(6426):489-493. |
[4] | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J] Nature Reviews Materials, 2016,1(4).Doi: 10.1038/natrevmats.2016.13. |
[5] | 陈昆峰, 李宫, 梁晰童, 等. 稀土改性电化学储能电极材料的研究进展[J]. 硅酸盐学报, 2016,44(8):1241-1247. |
[6] | XUE D F, SUN C T, CHEN X Y. Hybridized valence electrons of 4f0-145d0-16s2:The chemical bonding nature of rare earth elements[J]. Journal of Rare Earths, 2017,35(8):837-843. |
[7] | XUE D F, SUN C T, CHEN X Y. Hybridization:A chemical bonding nature of atoms[J]. Chinese Journal of Chemistry, 2017,35(9):1452-1458. |
[8] | XUE D F, SUN C T. 4f chemistry towards rare earth materials science and engineering[J]. Science China:Technological Science, 2017,60(11):1767-1768. |
[9] | LIU C F, NEALE Z G, CAO G Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today, 2016,19(2):109-123. |
[10] | PATEL R L, XIE H, PARK J, et al. Significant capacity and cyclelife improvement of lithium-ion batteries through ultrathin conduc-tive film stabilized cathode particles[J]. Advanced Materials In-terfaces, 2015,3(13).Doi: 10.1002/admi.201600525. |
[11] | SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Na-ture Materials, 2013,12(9):827-835. |
[12] | MCCALLA M, ABAKUMOV A M, SAUBANERE M, et al. Visual-ization of O—O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015,350(6267):1516-1521. |
[13] | WANG H, ZHANG J J, HUANG X D, et al. Half-metallicity in sin-gle-layered manganese dioxide nanosheets by defect engineer-ing[J]. Angewandte Chemie:International Edition, 2015,54(4):1195-1199. |
[14] | LIU Q, SU X, LEI D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018,3(11):936-943. |
[15] | OUMELLAL Y, ROUGIER A, AYMARD L, et al. Metal hydrides for lithium-ion batteries[J]. Nature Materials, 2008,7(11):916-921. |
[16] | ZHENG X Y, YANG C K, CHANG X H, et al. Synergism of rare earth trihydrides and graphite in lithium storage:Evidence of hy-drogen-enhanced lithiation[J]. Advanced Materials, 2018,30(3).Doi: 10.1002/adma.201704353. |
[17] | DAVIS V K, BATES C M, OMICHI K, et al. Room-temperature cy-cling of metal fluoride electrodes:Liquid electrolytes for high-en-ergy fluoride ion cells[J]. Science, 2018,362(6419).Doi: 10.1126/science.aat7070. |
[18] | REDDY M A, FICHTNER M. Batteries based on fluoride shuttle[J]. Journal of Materials Chemistry, 2011,21(43):17059-17062. |
[19] | THIEU D T, HAMMAD M, BHATIA, H, et al. CuF2 as reversible cathode for fluoride ion batteries[J]. Advanced Functional Materials, 2017,27(31).Doi: 10.1002/adfm.201701051. |
[20] | MANTHIRAM A, YU X W, WANG S F, et al. Lithium battery che-mistries enabled by solid-state electrolytes[J]. Nature Reviews Ma-terials, 2017,2(4).Doi: 10.1038/natrevmats.2016.103. |
[21] | ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-ytpe all-solid-state batteries[J]. Advanced Materials, 2018,30(44). Doi: 10.1002/adma.201803075. |
[22] | 詹望成, 郭耘, 龚学庆, 等. 二氧化铈表面氧的活化及对氧化反应的催化作用[J]. 中国科学:化学, 2012,42(4):433-445. |
[23] | LI F, ZHANG Y B, XIAO D H, et al. Hydrothermal method prepar-ed Ce-P-O catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range[J]. ChemCatChem, 2010,2(11):1416-1419. |
[24] | 张昭良, 何洪, 赵震. 汽车尾气三效催化剂研究和应用40年[J]. 环境化学, 2021,40(7):1937-1944. |
[25] | 张安文. 碳中和为稀土应用带来重大发展机遇[J]. 稀土信息, 2021(5):8-11. |
[26] | 苏文清. 中国稀土产业经济分析与政策研究[M]. 北京: 中国财政经济出版社, 2009. |
[27] | 新华社. 我国研制出时速400公里“永磁高铁”电机[N/OL]. 人民日报, (2019-09-18)[2021-10-21]. https://baijiahao.baidu.com/s?id=1644985264038451878& wfr=spider&for=pc. |
[28] | GUTFLEISCH O. High-temperature samarium cobalt permanent magnets[M] //LIU J,FULLERTON E,GUTFLEISCH O,SELLMYER D.Nanoscale Magnetic Materials and Applications.Boston:Springer, 2009: 337-372. |
[29] | XIONG X, OHKUBO T, KOYAMA T, et al. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe[J]. Acta Materialia, 2004,52:737-748. |
[30] | STRNAT K J. The hard-magnetic properties of rare earth transition metal alloys[J]. IEEE Transactions on Magnetics, 1972,8(3):511-516. |
[31] | TANG W, ZHANG Y, HADJIPANAYIS G C. Microstructure and magnetic properties of Sm(CobalFexCu0.128Zr0.02)7.0 magnets with Fe substitution[J]. Journal of Magnetism and Magnetic Materials, 2000,221(3):268-272. |
[32] | DUERRSCHNABEL M, YI M, UESTUENER K, et al. Atomic struc-ture and domain wall pinning in samarium-cobalt-based permanent magnets[J]. Nature Communications, 2017,8(54):1-7. |
[33] | SUN W, ZHU M, FANG Y, et al. Magnetic properties and microst-ructures of high-performance Sm2Co17 based alloy[J]. Journal of Magnetism and Magnetic Materials, 2015,378:214-216. |
[34] | CAO J, ZHANG T L, LIU J H, et al. Grain boundary optimization induced substantial squareness enhancement and high performan-ce in iron-rich Sm-Co-Fe-Cu-Zr magnets[J]. Journal of Materials Science & Technology, 2021,85:56-61. |
[35] | HORIUCHI Y, HAGIWARA M, ENDO M, et al. Influence of inter-mediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnets[J]. Journal of Applied Physics, 2015,117(17).Doi: 10.1063/1.4906757. |
[36] | CHEN H, WANG Y, YAO Y, et al. Attractive-domain-wall-pinning controlled Sm-Co magnets overcome the coercivity-remanence tra-de-off[J]. Acta Materialia, 2019,164:196-206. |
[37] | WANG Y, YUE M, WU D, et al. Microstructure modification indu-ced giant coercivity enhancement in Sm(CoFeCuZr)z permanent magnets[J]. Scripta Materialia, 2018,146:231-235. |
[38] | YAN G, LIU Z, XIA W, et al. Grain boundary modification induced magnetization reversal process and giant coercivity enhancement in 2:17 type SmCo magnets[J]. Journal of Alloys and Compounds, 2019,785:429-435. |
[39] | SONG K, FANG Y, SUN W, et al. Microstructural analysis during the step-cooling annealing of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 anisotropic sintered magnets[J]. IEEE Transactions on Magnetics, 2017,53(11):1-4. |
[40] | HORIUCHI Y, HAGIWARA M, OKAMOTO K, et al. Effect of pre-aging treatment on the microstructure and magnetic properties of Sm(Co,Fe,Cu,Zr)7.8 sintered magnets[J]. Materials Transactio-ns, 2014,55(3):482-488. |
[41] | ZHOU X L, LIU Y, SONG X, et al. Enhanced magnetic properties of Fe-rich Sm-Co-Fe-Cu-Zr magnets by compressive stress-ag-ing[J]. Materialia, 2021,20.Doi: 10.1016/j.mtla.2021.101230. |
[42] | ZHOU X L, YUAN T, MA T Y. Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging[J]. Journal of Materials Science & Technology, 2022,106:70-76. |
[43] | SAGAWA M, FUJIMURA S, TOGAWA N, et al. New material for permanent-magnets on a base of Nd and Fe[J]. Journal of Applied Physics, 1984,55(6):2083-2087. |
[44] | YAN M, JIN J Y, MA T Y. Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets[J]. Chinese Physics B, 2019,28(7).Doi: 10.1088/1674-1056/28/7/077507. |
[45] | HERBST J F. R2Fe14B materials:Intrinsic properties and techno-logical aspects[J]. Reviews of Modern Physics, 1991,63(4):819-898. |
[46] | UNE Y, SAGAWA M. Development and prospect of the Nd-Fe-B sintering magnets[C] //Proceeding of 21st International Workshop on REPM.Slovenia, 2010: 183-193. |
[47] | SEPEHRI-AMIN H, UNE Y, OHKUBO T, et al. Microstructure of fine-grained Nd-Fe-B sintered magnets with high coercivity[J]. Scripta Materialia, 2011,65(5):396-399. |
[48] | PARK K T, HIRAGA K, SAGAWA M. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets[C] //Proceedings of the sixteenth international workshop on rare-earth magnets and their applications.Sendai, 2000: 257-264. |
[49] | LIU Z W, HE J Y, ZHOU Q, et al. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets[J]. Journal of Materials Science & Technology, 2022,98:51-61. |
[50] | MA T Y, WU B, ZHANG Y J, et al. Enhanced coercivity of Nd-Ce-Fe-B sintered magnets by adding(Nd,Pr)-H powders[J]. Journal of Alloys and Compounds, 2017,721:1-7. |
[51] | ZHU M G, LI W, WANG J D, et al. Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method[J]. IEEE Transactions on Magnetics, 2014,50(1):1-4. |
[52] | JIN J Y, MA T Y, ZHANG Y J, et al. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit:Solution to global rare earth criticality[J]. Scientific Reports, 2016,6.Doi: 10.1038/srep32200. |
[53] | ZHANG Y J, MA T Y, JIN J Y, et al. Effects of REFe2 on microstruc-ture and magnetic properties of Nd-Ce-Fe-B sintered magnets[J]. Acta Materialia, 2017,128:22-30. |
[54] | MA T Y, YAN M, WU K Y, et al. Grain boundary restructuring of multi-main-phase Nd-Ce-Fe-B sintered magnets with Nd hydri-des[J]. Acta Materialia, 2018,142:18-28. |
[55] | ZHANG Y J, MA T Y, YAN M, et al. Post-sinter annealing influen-ces on coercivity of multi-main-phase Nd-Ce-Fe-B magnets[J]. Acta Materialia, 2018,146:97-105. |
[56] | LIU D, ZHAO T Y, LI R, et al. Micromagnetic simulation of the in-fluence of grain boundary on cerium substituted Nd-Fe-B magnets[J]. AIP Advances, 2017,7(5).Doi: 10.1063/1.4972803. |
[57] | FAN X, GUO S, CHEN K, et al. Tuning Ce distribution for high per-formance Nd-Ce-Fe-B sintered magnets[J]. Journal of Magnetism and Magnetic Materials, 2016,419:394-399. |
[58] | MA Q, ZHU J T, ZHANG X F, et al. Achievement of high perfor-mance of sintered R-Fe-B magnets based on misch metal doped with PrNd nanoparticles[J]. Rare Metals, 2018,37(3):237-242. |
[59] | JIN J Y, YAN M, LIU Y S, et al. Attaining high magnetic perfor-mance in as-sintered multi-main-phase Nd-La-Ce-Fe-B mag-nets:Toward skipping the post-sinter annealing treatment[J]. Acta Materialia, 2019,169:248-259. |
[60] | NIU E, CHEN Z A, CHEN G A, et al. Achievement of high coerciv-ity in sintered R-Fe-B magnets based on misch-metal by dual alloy method[J]. Journal of Applied Physics, 2014,115(11).Doi: 10.1063/1.4869202. |
[61] | JIANG Q Z, HE L K, LEI W K, et al. Microstructure and magnetic properties of multi-main-phase Ce-Fe-B spark plasma sintered magnets by dual alloy method[J]. Journal of Magnetism and Mag-netic Materials, 2019,475:746-753. |
[62] | ZHANG X F, LIU F, LIU Y L, et al. Recycling of sintered Nd-Fe-B magnets doped with PrNd nanoparticles[J]. Journal of Magnetics, 2015,20(2):97-102. |
[63] | ZHANG S, SAJI S E, YIN Z, et al. Rare-earth incorporated alloy catalysts:Synjournal,properties,and applications[J]. Advanced Ma-terials, 2021,33(16).Doi: 10.1002/adma.202005988. |
[64] | SANTOS D M F, SEQUEIRA C A C, MACCIÒ D, et al. Platinum-rare earth electrodes for hydrogen evolution in alkaline water elec-trolysis[J]. International Journal of Hydrogen Energy, 2013,38(8):3137-3145. |
[65] | ROSALBINO F, DELSANTE S, BORZONE G, et al. Electrocataly-tic behaviour of Co-Ni-R(R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline me-dium[J]. International Journal of Hydrogen Energy, 2008,33(22):6696-6703. |
[66] | GHOBRIAL S, KIRK D, THORPE S. Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts[J]. Electrocatalysis, 2019,10(3):243-252. |
[67] | ROSALBINO F, MACCIÒ D, ANGELINI E, et al. Electrocatalytic properties of Fe-R(R=rare earth metal) crystalline alloys as hydro-gen electrodes in alkaline water electrolysis[J]. Journal of Alloys and Compounds, 2005,403(1/2):275-282. |
[68] | YAO N, MENG R, WU F, et al. Oxygen-vacancy-induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolu-tion reactions[J]. Applied Catalysis B:Environmental, 2020,277.Doi: 10.1016/j.apcatb.2020.119282. |
[69] | LI J Y, XIA Z M, XUE Q Y, et al. Insights into the interfacial Lewis acid-base pairs in CeO2-loaded CoS2 electrocatalysts for alkaline hydrogen evolution[J]. Small, 2021,17(39).Doi: 10.1002/smll.202103018. |
[70] | GAO W, YAN M, CHEUNG H Y, et al. Modulating electronic struc-ture of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media[J]. Nano Energy, 2017,38:290-296. |
[71] | ZHOU W, SUNARSO J. Enhancing bi-functional electrocatalytic ac-tivity of perovskite by temperature shock:A case study of LaNiO3-δ[J]. The Journal of Physical Chemistry Letters, 2013,4(17):2982-2988. |
[72] | ZHU Y L, LIN Q, HU Z W, et al. Self-assembled ruddlesden-pop-per/perovskite hybrid with lattice-oxygen activation as a superior oxygen evolution electrocatalyst[J]. Small, 2020,16(20).Doi: 10.1002/smll.202001204. |
[73] | KIM J, SHIH P C, TSAO K C, et al. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media[J]. Journal of the American Chemical Society, 2017,139(34):12076-12083. |
[74] | ZHANG N, WANG C, CHEN J, et al. Metal substitution steering electron correlations in pyrochlore ruthenates for efficient acidic water oxidation[J]. ACS Nano, 2021,15(5):8537-8548. |
[75] | WANG H P, WANG J, PI Y C, et al. Double Perovskite LaFexNi1-xO3 nanorods enable efficient oxygen evolution electrocatalysis[J]. An-gewandte Chemie, 2019,58(8):2316-2320. |
[76] | DAI T Y, ZHANG X, SUN M Z, et al. Uncovering the promotion of CeO2/CoS1.97 heterostructure with specific spatial architectures on oxygen evolution reaction[J]. Advanced Materials, 2021,33(42).Doi: 10.1002/adma.202102593. |
[77] | LIU Y, MA C, ZHANG Q, et al. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids[J]. Advanced Materials, 2019,31(21).Doi: 10.1002/adma.201900062. |
[78] | HU Y, JENSEN J O, NORBY P, et al. Mechanistic insights into the synjournal of platinum-rare earth metal nanoalloys by a solid-state chemical route[J]. Chemistry of Materials, 2021,33(2):535-546. |
[79] | COLIC V, BANDARENKA A S. Pt alloy electrocatalysts for the oxy gen reduction reaction:From model surfaces to nanostructured sy-stems[J]. ACS Catalysis, 2016,6(8):5378-5385. |
[80] | JOHANSSON T P, ULRIKKEHOLM E T, HERNANDEZ-FERNA-NDEZ P, et al. Pt skin versus Pt skeleton structures of Pt3Sc as elec-trocatalysts for oxygen reduction[J]. Topics in Catalysis, 2014,57:245-254. |
[81] | YOO S J, HWANG S J, LEE J G, et al. Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt-La alloy electrodes[J]. Energy & Environmental Science, 2012,5(6):7521-7525. |
[82] | GREELEY J, STEPHENS I E L, BONDARENKO A S, et al. Alloys of platinum and early transition metals as oxygen reduction elec-trocatalysts[J]. Nature Chemistry, 2009,1(7):552-556. |
[83] | MALACRIDA P, ESCUDERO-ESCRIBANO M, VERDAGUER-CASADEVALL A, et al. Enhanced activity and stability of Pt-La and P-Ce alloys for oxygen electroreduction:The elucidation of the active surface phase[J]. Journal of Materials Chemistry A, 2014,2(12):4234-4243. |
[84] | GARLYYEV B, POHL M B, COLIC V, et al. High oxygen reduc-tion reaction activity of Pt5Pr electrodes in acidic media[J]. Electrochemistry Communications, 2018,88:10-14. |
[85] | LEE C H, PARK H N, LEE Y K, et al. Palladium on yttrium-em-bedded carbon nanofibers as electrocatalyst for oxygen reduction reaction in acidic media[J]. Electrochemistry Communications, 2019,106.Doi: 10.1016/j.elecom.2019.106516. |
[86] | CHEN J Y, LI Y, LU N, et al. Nanoporous PdCe bimetallic nanocu-bes with high catalytic activity towards ethanol electro-oxidation and the oxygen reduction reaction in alkaline media[J]. Journal of Materials Chemistry A, 2018,6(46):23560-23568. |
[87] | XIANG S, WANG L, HUANG C C, et al. Concave cubic PtLa alloy nanocrystals with high-index facets:Controllable synjournal in deep eutectic solvents and their superior electrocatalytic properties for ethanol oxidation[J]. Journal of Power Sources, 2018,399:422-428. |
[88] | NETO A O, WATANABE A Y, BRANDALISE M, et al. Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J]. Journal of Alloys and Compounds, 2009,476(1/2):288-291. |
[89] | AN X S, FAN Y J, CHEN D J, et al. Enhanced activity of rare earth doped PtRu/C catalysts for methanol electro-oxidation[J]. Electro-chimica Acta, 2011,56(24):8912-8918. |
[90] | CORRADINI P G, PEREZ J. Activity,mechanism,and short-term stability evaluation of PtSn-rare earth/C electrocatalysts for the ethanol oxidation reaction[J]. Journal of Solid State Electrochemistry, 2018,22(5):1525-1537. |
[91] | ZHANG S, ZENG Z C, LI Q Q, et al. Lanthanide electronic pertur-bation in Pt-Ln(La,Ce,Pr and Nd) alloys for enhanced methanol oxidation reaction activity[J]. Energy & Environmental Science, 2021.Doi: 10.1039/d1ee02433g. |
[92] | TANG Z C, LU G X. High performance rare earth oxides LnOx (Ln=Sc,Y,La,Ce,Pr and Nd) modified Pt/C electrocatalysts for meth-anol electrooxidation[J]. Journal of Power Sources, 2006,162(2):1067-1072. |
[93] | PEERA S G, LEE T G, SAHU A K. Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactio-ns:An overview[J]. Sustainable Energy & Fuels, 2019,3(8):1866-1891. |
[94] | CHEONG S W. 5th anniversay of npj quantum materials[J]. Na-ture, 2021,6(1).Doi: 10.1038/s41535-021-00366-x. |
[95] | ZHANG Z, SCHWANZ D, NARAYANAN B, et al. Perovskite nic-kelates as electric-field sensors in salt water[J]. Nature, 2018,553(7686):68-72. |
[96] | SUN Y F, KOTIUGA M, LIM D, et al. Strongly correlated perovskite lithium ion shuttles[J]. Proceedings of National Academy of Sci-ences of the United States of America, 2018,115(39):9672-9677. |
[97] | 霍知节. “揭秘”稀土超导材料[J]. 新材料产业, 2019,12:65-71. |
[98] | 秦亚媛, 沈瑶, 陈钢, 等. 稀土元素三角格子体系中的阻挫磁性与量子涨落[J]. 物理, 2021,50:454-462. |
[99] | ZE H, ZHEN M, YUAN D L, et al. Evidence of the berezinskii-ko-sterlitz-thouless phase in a frustrated magnet[J]. Nature Commu-nications, 2020,11.Doi: 10.1038/s41467-020-19380-x. |
[100] | CHI Y, XU J, XUE H, et al. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behav-iors:Synjournal and characterization of Eu9MgS2B20O41[J]. Journal of The American Chemical Society, 2019,141:9533-9536. |
[1] | 史国强, 徐珂, 陈昆峰, 薛冬峰. 介尺度设计功能新材料研究进展[J]. 无机盐工业, 2023, 55(3): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|