| [1] | XIAO P, CHEN W, WANG X. A Review of phosphide-based materials for electrocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2015, 5(24).Doi: 10.1002/aenm.201500985. | 
																													
																						| [2] | ESPOSITO D V, HUNT S T, KIMMEL Y C, et al. A new class of electrocatalysts for hydrogen production from water electrolysis:Metal monolayers supported on low-cost transition metal carbides[J]. Journal of the American Chemical Society, 2012, 134(6):3025-3033. | 
																													
																						| [3] | ZHANG G, WANG G, LIU Y, et al. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting[J]. Journal of the American Chemical Society, 2016, 138(44):14686-14693. | 
																													
																						| [4] | CHIANELLI R R, BERHAULT G, RAYBAUD P, et al. Periodic trends in hydrodesulfurization:In support of the sabatier principle[J]. Applied Catalysis A:General, 2002, 227(1):83-96. | 
																													
																						| [5] | YU J, LI G, LIU H, et al. Ru-Ru2PΦNPC and NPC@RuO2 synthesized via environment-friendly and solid-phase phosphating process by saccharomycetes as N/P sources and carbon template for overall water splitting in acid electrolyte[J]. Advanced Functional Materials, 2019, 29(22).Doi: 10.1002/adfm.201901154. | 
																													
																						| [6] | LI W, LIU Y, WU M, et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media[J]. Advanced Materials, 2018, 30(31).Doi: 10.1002/adma.201800676. | 
																													
																						| [7] | XU J, LIU T F, LI J, et al. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide[J]. Energy & Environmental Science, 2018, 11:1819-1827. | 
																													
																						| [8] | GALIZZIOLI D, TANTARDINI F, TRASATTI S. Ruthenium dioxide:A new electrode material.II.Non-stoichiometry and energetics of electrode reactions in acid solutions[J]. Journal of Applied Electrochemistry, 1975, 5(3):203-214. | 
																													
																						| [9] | MAHMOOD J, LI F, JUNG S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotechnology, 2017, 12(5):441-446. | 
																													
																						| [10] | LU B, GUO L, WU F, et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media[J]. Nature Communications, 2019, 10(1).Doi: 10.1038/s41467-019-08419-3. | 
																													
																						| [11] | LIU Y, YANG Y, PENG Z, et al. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values[J]. Nano Energy, 2019, 65.Doi: 10.1016/j.nanoen.2019.104023. | 
																													
																						| [12] | LIU Y, LI X, ZHANG Q, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots[J]. Angewandte Chemie International Edition, 2020, 59(4):1718-1726. | 
																													
																						| [13] | YU J, DAI Y, WU X, et al. Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts[J]. Chemical Engineering Journal, 2021, 417.Doi: 10.1016/j.cej.2020.128105. | 
																													
																						| [14] | LI M, WANG H, ZHU W, et al. RuNi nanoparticles embedded in Ndoped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting[J]. Advanced Science, 2020, 7.Doi: 10.1002/advs.201901833. | 
																													
																						| [15] | SU J, YANG Y, XIA G, et al. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media[J]. Nature Communications, 2017, 8.Doi: 10.1038/ncomms14969. | 
																													
																						| [16] | ZHU W, ZHANG W, LI Y, et al. Energy-efficient 1.67 V singleand 0.90 V dual-electrolyte based overall water-electrolysis devices enabled by a ZIF-L derived acid-base bifunctional cobalt phosphide nanoarray[J]. Journal of Materials Chemistry A, 2018, 6(47):24277-24284. | 
																													
																						| [17] | XU H, WEI J, ZHANG K, et al. Hierarchical NiMo phosphide nanosheets strongly anchored on carbon nanotubes as robust electrocatalysts for overall water splitting[J]. ACS Applied Materials & Interfaces, 2018, 10(35):29647-29655. | 
																													
																						| [18] | WU X, LI J, LI Y, et al. NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting[J]. Chemical Engineering Journal, 2021, 409.Doi: 10.1016/j.cej.2020.128161. | 
																													
																						| [19] | WANG Y, LIU Z, LIU H, et al. Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru2P nanoparticles[J]. ChemSus Chem, 2018, 11(16):2724-2729. | 
																													
																						| [20] | LI J S, HUANG M J, ZHOU Y W, et al. RuP2-based hybrids derived from MOFs:Highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2021, 9(20):12276-12282. | 
																													
																						| [21] | ZHU J, LI S, XIAO M, et al. Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution[J]. Nano Energy, 2020, 77.Doi: 10.1016/j.nanoen.2020.105212. | 
																													
																						| [22] | CHANG Q, MA J, ZHU Y, et al. Controllable synjournal of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):6388-6394. | 
																													
																						| [23] | GE R, WANG S, SU J, et al. Phase-selective synjournal of self-supported RuP films for efficient hydrogen evolution electrocatalysis in alkaline media[J]. Nanoscale, 2018, 10(29):13930-13935. | 
																													
																						| [24] | YANG B, XU J, BIN D, et al. Amorphous phosphatized rutheniumiron bimetallic nanoclusters with Pt-like activity for hydrogen veolution reaction[J]. Applied Catalysis B:Environmental, 2021, 283.Doi: 10.1016/j.apcatb.2020.119583. | 
																													
																						| [25] | YU J, GUO Y, MIAO S, et al. Spherical ruthenium disulfide-sulfurdoped graphene composite as an efficient hydrogen evolution electrocatalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(40):34098-34107. | 
																													
																						| [26] | LI P, DUAN X, WANG S, et al. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range[J]. Small, 2019, 15(46).Doi: 10.1002/smll.201904043. | 
																													
																						| [27] | XU Y, DU C, SHEN Q, et al. Well-dispersed pyrite-type RuS2 nanocrystals anchored on porous nitrogen and sulfur co-doped hollow carbon spheres for enhanced alkaline hydrogen evolution[J]. Chemical Engineering Journal, 2021, 417.Doi: 10.1016/j.cej.2021.129318. | 
																													
																						| [28] | LUO W, ZHAO Y, CONG H, et al. Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(13):7013-7017. | 
																													
																						| [29] | WANG K, CHEN Q, HU Y, et al. Crystalline Ru0.33Se nanoparticlesdecorated TiO2 nanotube arrays for enhanced hydrogen evolution reaction[J]. Small, 2018, 14(37).Doi: 10.1002/smll.201802132. | 
																													
																						| [30] | WANG K, LI B, WEI W, et al. Excessive Se on RuSe2 nanocrystals to accelerate water dissociation for the enhanced electrocatalytic hydrogen evolution reaction[J]. Nanoscale, 2020, 12(46):23740-23747. | 
																													
																						| [31] | CHEN G, WANG T, ZHANG J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites[J]. Advanced Materials, 2018, 30(10).Doi: 10.1002/adma.201706279. | 
																													
																						| [32] | NONG S, DONG W, YIN J, et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2018, 140(17):5719-5727. | 
																													
																						| [33] | ZHANG X, ZHOU F, ZHANG S, et al. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization[J]. Advanced Science, 2019, 6(10).Doi: 10.1002/advs.201900090. |