[1] |
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014,9(5):372-378.
|
[2] |
Liu H, Neal A T, Zhu Z, et al. Phosphorene:An unexplored 2D semi-conductor with a high hole mobility[J]. ACS Nano, 2014,8(4):4033-4041.
|
[3] |
Butler S Z, Hollen S M, Cao L, et al. Progress,challenges,and oppo-rtunities in two-dimensional materials beyond graphene[J]. ACS Nano, 2013,7(4):2898-2926.
|
[4] |
Liu H, Du Y, Deng Y, et al. Semicon ducting black phosphorus:Syn-journal,transport properties and electronic applications[J]. Chemi-cal Society Reviews, 2015,46(27):2732-2743.
|
[5] |
Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014,5(1):1-7.
|
[6] |
Peng R, Khaliji K, Youngblood N, et al. Mid-infrared electro-optic modulation in few-layer black phosphorus[J]. Nano Letters, 2017,17(10):6315-6320.
|
[7] |
Zhang Y, Zheng Y, Rui K, et al. 2D black phosphorus for energy sto-rage and thermoelectric applications[J]. Small, 2017.Doi: 10.1002/smll.201700661.
|
[8] |
Zhao Y, Tong L, Li Z, et al. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided pho-tothermal therapy[J]. Chemistry of Materials, 2017,29(17):7131-7139.
|
[9] |
Pang J, Bachmatiuk A, Yin Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices[J]. Advanced Energy Materials, 2018,8(8):1702093-1702136.
|
[10] |
Zhu W, Yogeesh M N, Yang S, et al. Flexible black phosphorus ambipolar transistors,circuits and AM demodulator[J]. Nano Let-ters, 2015,15(3):1883-1890.
|
[11] |
Tan C, Cao X, Wu X J, et al. Recent advances in ultrathin two-di-mensional nanomaterials[J]. Chemical Reviews, 2017,117(9):6225-6331.
|
[12] |
Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and ch-aracterization of few-layer black phosphorus[J]. 2d Materials, 2014,1(2):025001.
|
[13] |
Guo Z, Zhang H, Lu S, et al. From black phosphorus to phospho-rene:Basic solvent exfoliation,evolution of raman scattering,and applications to ultrafast photonics[J]. Advanced Functional Mate-rials, 2016,25(45):6996-7002.
|
[14] |
Luo W, Yang R, Liu J, et al. Thermal sublimation:A scalable and controllable thinning method for the fabrication of few-layer black phosphorus[J]. Nanotechnology, 2017,28(28):285301-285388.
|
[15] |
Huang H, Gao M, Kang Y, et al. Rapid and scalable production of high-quality phosphorene by plasma-liquid technology[J]. Chemi-cal Communications, 2019,56:221-224.
|
[16] |
Xu Y J, Shi X Y, Zhang Y S, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon[J]. Nature Communications, 2020,11:1330-1338.
|
[17] |
Wu L, Bian S, Huang H, et al. Black phosphorus:An effective feeds-tock for the synjournal of phosphorus-based chemicals[J]. CCS Che-mistry, 2019,1(2):166-172.
|
[18] |
Liu S, Huang Z, Ren X, et al. P25/black phosphorus/graphene hy-brid for enhanced photocatalytic activity[J]. Journal of Materials Science:Materials in Electronics, 2017,29(6):4441-4448.
|
[19] |
Lei W, Liu G, Zhang J, et al. Black phosphorus nanostructures:Re-cent advances in hybridization,doping and functionalization[J]. Chemical Society Reviews, 2017,46(12):3492-3509.
|
[20] |
Qiu P X, Xu C M, Zhou N, et al. Metal-free black phosphorus nano-sheets-decorated graphitic carbon nitride nanosheets with CP bon-ds for excellent photocatalytic nitrogen fixation[J]. Applied Cat-alysis B:Environmental, 2017.Doi: 10.1016/j.apcatb.2017.09.010.
|
[21] |
Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phos-phorus as a new saturable absorber for both Q-switching and bodelocking laser operation[J]. Optics Express, 2015,23(10):12823-12833.
|
[22] |
Sun Z B, Xie H H, Tang S Y, et al. Ultrasmall black phosphorus qu-antum dots:Synjournal and use as photothermal aents[J]. Angewan-dte Chemie International Edition, 2015,54(39):11526-11530.
|
[23] |
Woomer A H, Farnsworth T W, Hu J, et al. Phosphorene:Synthe-sis,scale-up,and quantitative optical spectroscopy[J]. ACS Nano, 2015,9(9):8869-8884.
|
[24] |
Ambrosi A, Sofer Z, Pumera M, Electrochemical exfoliation of lay-ered black phosphorus into phosphorene[J]. Angewandte Chemie International Edition, 2017,56(35):10443-10445.
|
[25] |
Wen M, Liu D, Kang Y, et al. Synjournal of high-quality black phos-phorus sponges for all-solid-state supercapacitors[J]. Materials Ho-rizons, 2019,6(1):176-181.
|
[26] |
Li Q, Zhou Q, Shi L, et al. Recent advances in oxidation and degra-dation mechanisms of ultrathin 2d materials under ambient condi-tions and their passivation strategies[J]. Journal of Materials Che-mistry A, 2019,7(9):4291-4312.
|
[27] |
Zhou Q, Chen Q, Tong Y, et al. Light-induced ambient degradation of few-layer black phosphorus:Mechanism and protection[J]. An-gewandte Chemie International Edition, 2016,55(38):11437-11441.
|
[28] |
Tayari V, Hemsworth N, Fakih I, et al. Two-dimensional magneto-transport in a black phosphorus naked quantum well[J]. Nature Communications, 2015,6:7702-7709.
|
[29] |
Artel V, Guo Q, Cohen H, et al. Protective molecular passivation of black phosphorous[J]. Npj 2D Materials & Applications, 2017,1(1):27-32.
|
[30] |
Liu H, Lian P, Tang Y, et al. Facile synjournal of an air-stable 3D re-duced graphene oxide-phosphorene composite by sonication[J]. Applied Surface Science, 2019.Doi: 10.1016/j.apsusc.2019.01.248 .
|
[31] |
Chen X, Wu Y, Wu Z, et al. High quality sandwiched black phos-phorus heterostructure and its quantum oscillations[J]. Nature Co-mmunications, 2015,6:7315-7321.
|
[32] |
Pei J, Gai X, Yang J, et al. Producing air-stable monolayers of pho-sphorene and their defect engineering[J]. Nature Communications, 2016,7:10450-10456.
|
[33] |
Huang H, He L, Zhou W, et al. Stable black phosphorus/Bi2O3 he-terostructures for synergistic cancer radiotherapy[J]. Biomaterials, 2018,171:12-22.
|
[34] |
Zhao Y, Wang H, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Che-mie International Edition, 2016,128(16):5087-5091.
|
[35] |
Wu L, Wang J, Lu J, et al. Lanthanide-coordinated black phospho-rus[J]. Small, 2018,14(29):1801405.
|
[36] |
Guo Z, Chen S, Wang Z, et al. Metal-ion-modified black phospho-rus with enhanced stability and transistor performance[J]. Advan-ced Materials, 2017,29(42):1703811-1703819.
|
[37] |
Yang B, Wan B, Zhou Q, et al. Te-doped black phosphorus field-effect transistors[J]. Advanced Materials, 2016,28(42):9408-9415.
|
[38] |
Liu D, Wang J, Lu J, et al. Metal doped phosphorene:Direct synjournal of metal-doped phosphorene with enhanced electro-catalytic hydrogen evolution[J]. Small Methods, 2019.Doi: 10.1002/smtd.201970021.
|
[39] |
Wang L, Sofer Z, Pumera M. Voltammetry of layered black phosp-horus:Electrochemistry of multilayer phosphorene[J]. Chemelec-trochem, 2015,2(3):324-327.
|
[40] |
Lin Y, Pan Y, Zhang J. In-situ grown of Ni2P nanoparticles on 2D bl-ack phosphorus as a novel hybrid catalyst for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2017,42(12):7951-7956.
|
[41] |
He R, Hua J, Zhang A, et al. Molybdenum disulfide-black phos-phorus hybrid nanosheets as a superior catalyst for electrochemi-cal hydrogen evolution[J]. Nano Letters, 2017,17(7):4311-4316.
|
[42] |
Wang J, Liu D, Huang H, et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis[J]. Ange-wandte Chemie International Edition, 2018,57(10):2600-2604.
|
[43] |
Wang X, Bai L, Lu J, et al. Rapid activation of platinum with black phosphorus for efficient hydrogen evolution[J]. Angewandte Che-mie International Edition, 2019,58(52):19060-19066.
|
[44] |
Zhu M, Sun Z, Fujitsuka M, et al. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth va-nadate using visible light[J]. Angewandte Chemie International Edition, 2018,57(8):2160-2164.
|
[45] |
Cai X, Mao L, Yang S, et al. Ultrafast charge separation for full so-lar spectrum activated photocatalytic H2 generation in BP-Au-CdS heterostructure[J]. ACS Energy Letters, 2018,3(4):932-939.
|
[46] |
Bian S, Wen M, Wang J, et al. Edge-rich black phosphorus for pho-tocatalytic nitrogen fixation[J]. The Journal of Physical Chemistry Letters, 2020,11(3):1052-1058.
|
[47] |
Liu Y T, Li D, Yu J, et al. Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes:A robust,double-active electrocatalyst toward efficient nitrogen fixation[J]. Angewandte Chemie International Edition, 2019,131(46):16591-16596.
|
[48] |
Liu D, Wang J, Bian S, et al. Photoelectrochemical synjournal of am-monia with black phosphorus[J]. Advanced Functional Materials, 2020.Doi: 10.1002/adfm.202002731.
|
[49] |
Shen Z R, Sun S T, Wang W J, et al. A black-red phosphorus het-erostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015(7):3285-3288.
|
[50] |
Zheng Y, Yu Z, Ou H, et al. Black phosphorus and polymeric car-bon nitride heterostructure for photoinduced molecular oxygen activation[J]. Advanced Functional Materials, 2018,28(10). Doi: 10.1002/adfm.201705407.
|
[51] |
Wen M, Wang J, Tong R, et al. A low cost metal-free photocatalyst based on black phosphorus[J]. Advanced Science, 2019.Doi: 10.1002/advs.201801321.
|
[52] |
Bai L, Wang X, Tang S, et al. Black phosphorus/platinum hetero-structure:A highly efficient photocatalyst for solar-driven chemi-cal reactions[J]. Advanced Materials, 2018.Doi: 10.1002/adma.201803641.
|