[1] |
程加林, 池永庆, 贾攀锋, 等. 通氨提纯氯化铵转化法制取硫酸钾新工艺研究[J]. 无机盐工业, 2019,51(10):56-59.
|
[2] |
徐梓淮, Nafiu Sadi Bature, 范天博, 等. 铵(氨)循环工艺-碳氨法制备碳酸钙的研究[J]. 无机盐工业, 2019,51(4):32-36.
|
[3] |
孙娜, 尤彩霞, 胡亚伟, 等. 磷尾矿氨循环法分离钙镁制取氢氧化镁碳酸钙的研究[J]. 无机盐工业, 2018,50(3):57-59.
|
[4] |
Licht S, Cui B, Wang B, et al. Ammonia synjournal by N2 and steam elec-trolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014,345(6197):637-640.
|
[5] |
Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synjournal—The selectivity challenge[J]. ACS Catalysis, 2016,7(1):706-709.
|
[6] |
Suryanto B H R, Du H L, Wang D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019,2(4):290-296.
|
[7] |
Zhang L, Ji X, Ren X, et al. Electrochemical ammonia synjournal via nitrogen reduction reaction on a MoS2.catalyst:Theoretical and ex-perimental studies[J]. Advanced Materials, 2018,30(28).Doi: 10.1002/adma.201800191.
|
[8] |
Yang X, Nash J, Anibal J, et al. Mechanistic insights into electro-chemical nitrogen reduction reaction on vanadium nitride nanopar-ticles[J]. Journal of the American Chemical Society, 2018,140(41):13387-13391.
|
[9] |
Wang L, Xia M, Wang H, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018,2(6):1055-1074.
|
[10] |
Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018,1(7):490-500.
|
[11] |
Hou T, Xiao Y, Cui P, et al. Operando oxygen vacancies for enhan-ced activity and stability toward nitrogen photofixation[J]. Advabced Energy Materials, 2019,9(43).Doi: 10.1002/aenm.201902319.
|
[12] |
Lawrence N J, Brewer J R, Wang L, et al. Defect engineering in cu-bic cerium oxide nanostructures for catalytic oxidation[J]. Nano Letters, 2011,11(7):2666-2671.
|
[13] |
Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolu-tion reaction[J]. Angewandte Chemie International Edition, 2016,55(17):5277-5281.
|