| [1] | Shi Ming, Li Ruiwen, Liu Yulin. In situ preparation of LiFePO4/C with unique copolymer carbon resource for superior performance li-thium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 854.Doi: 10.1016/j.jallcom.2020.157162. | 
																													
																						| [2] | Li Jiwen, Liu Yong, Yao Wenli, et al. Li2TiO3 and Li2ZrO3 co-modi-fication LiNi0.8Co0.1Mn0.1O2 cathode material with improved high volt-age cycling performance for lithium-ion batteries[J]. Solid State Io-nics, 2020, 349.Doi: 10.1016/j.ssi.2020.115292. | 
																													
																						| [3] | Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4):1188-1192. | 
																													
																						| [4] | Li Yong, Wang Juan, Yao Jia, et al. Enhanced cathode performance of LiFePO4/C composite by novel reaction of ethylene glycol with different carboxylic acids[J]. Materials Chemistry and Physics, 2019, 224:293-300. | 
																													
																						| [5] | Kirsanova Maria A, Ryazantsev Sergey V, Abakumov Artem M. An-ionic substitution in LiMnPO4:The Li1-xMn1+x(PO4)1-y-z(VO4)4z(OH)4 solid solutions prepared with a microwave-assisted hydrothermal method[J]. Journal of Solid State Chemistry, 2020, 286.Doi: 10.1016/j.jssc.2020.121294. | 
																													
																						| [6] | 李卫, 田文怀, 鲁其. 锂离子电池正极材料技术研究进展[J]. 无机盐工业, 2015, 47(6):1-5. | 
																													
																						| [7] | Ragupathi Veena, Panigrahi Puspamitra, Nagarajan Ganapathi Subramaniam. Enhanced electrochemical performance of nanopyramid-like LiMnPO4/C cathode for lithium-ion batteries[J]. Applied Surface Science, 2019, 495.Doi: 10.1016/j.apsusc.2019.143541. | 
																													
																						| [8] | Alsamet Mohammed A M M, Burgaz Engin. Synjournal and charac-terization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods[J]. Electrochimica Acta, 2021, 367.Doi: 10.1016/j.electacta.2020.137530. | 
																													
																						| [9] | Li Rong, Fan Changling, Zhang Weihua, et al. Structure and perfor-mance of Na+ and Fe2+ co-doped Li1-xNaxMn0.8Fe0.2PO4/C nanocapsule synthesized by a simple solvothermal method for lithium ion batteries[J]. Ceramics International, 2019, 45(8):10501-10510. | 
																													
																						| [10] | Omidi Amir Hossein, Babaei Alireza, Ataie Abolghasem. Low temperature synjournal of nanostructured LiFePO4/C cathode material for lithium ion batteries[J]. Materials Research Bulletin, 2020, 125. Doi: 10.1016/j.materresbull.2020.110807. | 
																													
																						| [11] | Zhang Yingtang, Xin Pengyang, Yao Qiufeng. Electrochemical performance of LiFePO4/C synthesized by sol-gel method as cathode for aqueous lithium ion batteries[J]. Journal of Alloys and Compounds, 2018, 741:404-408. | 
																													
																						| [12] | Guo H, Wu C, Liao L, et al. Performance improvement of lithium manganese phosphate by controllable morphology tailoring with acid-engaged nano engineering[J]. Inorganic Chemistry, 2015, 54(2):667-674. | 
																													
																						| [13] | Cao Yanbing, Xu Lian, Xie Xiaoming, et al. Controllable synjournal of micronano-structured LiMnPO4/C cathode with hierarchical spindle for lithium ion batteries[J]. Ceramics International, 2019, 45(4):4886-4893. | 
																													
																						| [14] | Zhang Wenxuan, Shan Zhongqiang, Zhu Kunlei, et al. LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries[J]. Electrochimica Acta, 2015, 153:385-392. | 
																													
																						| [15] | Zhu Chongjia, Wu Zhiqiu, Xie Jian, et al. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-perfor-mance lithium-ion batteries cathode[J]. Journal of Materials Science & Technology, 2018, 34(9):1544-1549. | 
																													
																						| [16] | Pan Xiaoliang, Zeng Yingying, Gao Zhi, et al. Effects of Li2SO4·H2O amounts on morphologies of hydrothermal synthesized LiMnPO4 cathodes[J]. RSC Advances, 2016, 105(6):103232-103237. | 
																													
																						| [17] | Li Junzhe, Luo Shaohua, Ding Xueyong, et al. NaCl-template assisted synjournal of 3D honeycomb-like LiMnPO4/C with high rate and stable performance as lithium-ion battery cathodes[J]. ACS Sus-tainable Chemistry & Engineering, 2018, 12(6):16683-16691. | 
																													
																						| [18] | Pan Xiaoliang, Gao Zhi, Liu Lijun, et al. Self-templating preparation and electrochemical performance of LiMnPO4 hollow microspheres[J]. Journal of Alloys and Compounds, 2019, 783:468-477. | 
																													
																						| [19] | El Khalfaouy Redouan, Addaou Abdellah, Laajeb Ali, et al. Synjournal and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 775:836-844. | 
																													
																						| [20] | Ni Jiangfeng, Gao Lijun. Effect of copper doping on LiMnPO4 prepared via hydrothermal route[J]. Journal of Power Sources, 2011, 196(15):6498-6501. | 
																													
																						| [21] | Lv Xiaoyan, Huang Qiaoying, Wu Zhi, et al. Li0.995Nb0.005Mn0.85Fe0.15PO4/C as a high-performance cathode material for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2017, 21(5):1499-1507. | 
																													
																						| [22] | Rajammal K, Sivakumar D, Duraisamy Navaneethan, et al. Na-do-ped LiMnPO4 as an electrode material for enhanced lithium ion batteries[J]. Bulletin of Materials Science, 2017, 40(1):171-175. | 
																													
																						| [23] | 施立钦, 袁正勇, 彭振博. 氟掺杂磷酸锰锂正极材料的性能研究[J]. 电源技术, 2014, 38(8):1453-1455. | 
																													
																						| [24] | Clemens Oliver, Bauer Matthias, Haberkorn Robert, et al. Synjournal and characterization of vanadium-doped LiMnPO4-compounds:LiMn(PO4)x(VO4)1-x(0.8≤x≤1.0)[J]. Chemistry of Materials, 2012, 24(24):4717-4724. | 
																													
																						| [25] | Lei Z, Wang J, Yang J, et al. Nano-microhierarchical structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery[J]. ACS Appllied Materials & Interfaces, 2018, 10(50):43552-43560. | 
																													
																						| [26] | Dong Youzhong, Wang Long, Zhang Shouliang, et al. Two-phase interface in LiMnPO4 nanoplates[J]. Journal of Power Sources, 2012, 215:116-121. | 
																													
																						| [27] | Sronsri Chuchai, Boonchom Banjong. Thermal kinetic analysis of a complex process from a solid-state reaction by deconvolution procedure from a new calculation method and related thermodynamic functions of Mn0.90Co0.05-Mg0.05HPO4·3H2O[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9):1887-1902. | 
																													
																						| [28] | Vásquez F A, Calderón J A. Vanadium doping of LiMnPO4 cathode material:Correlation between changes in the material lattice and the enhancement of the electrochemical performance[J]. Electrochimica Acta, 2019, 325.Doi: 10.1016/j.electacta.2019.134930. | 
																													
																						| [29] | Yang Hao, Fu Cuimei, Sun Yijian, et al. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient[J]. Carbon, 2020, 158:102-109. | 
																													
																						| [30] | Wang Ruijie, Zheng Jinyun, Feng Xiangming, et al. Highly[010]-oriented,gradient Co-doped LiMnPO4 with enhanced cycling sta-bility as cathode for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2020, 24(3):511-519. | 
																													
																						| [31] | El Khalfaouy Redouan, Turan Servet, Dermenci Kamil Burak, et al. Nickel-substituted LiMnPO4/C olivine cathode material:Combustion synjournal,characterization and electrochemical performances[J]. Ceramics International, 2019, 45(14):17688-17695. | 
																													
																						| [32] | Luo Shaohua, Sun Yang, Bao Shuo, et al. Synjournal of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability[J]. Journal of Electroanalytical Chemistry, 2019, 832:196-203. | 
																													
																						| [33] | Kou Liqin, Chen Fangjie, Tao Fen, et al. High rate capability and cycle performance of Ce-doped LiMnPO4/C via an efficient solvo-thermal synjournal in water/diethylene glycol system[J]. Electrochi-mica Acta, 2015, 173:721-727. | 
																													
																						| [34] | Lee Jongwon, Park Minsik, Anass Benayad, et al. Electrochemical lithiation and delithiation of LiMnPO4:Effect of cation substitu-tion[J]. Electrochimica Acta, 2010, 55(13):4162-4169. | 
																													
																						| [35] | Zhang Hongliang, Gong Yang, Li Jie, et al. Selecting substituent elements for LiMnPO4 cathode materials combined with density functional theory(DFT) calculations and experiments[J]. Journal of Alloys and Compounds, 2019, 793:360-368. | 
																													
																						| [36] | Deng Ziwei, Wang Qi, Peng Dachun, et al. Fast precipitation-indu-ced LiFe0.5Mn0.5PO4/C nanorods with a fine size and large exposure of the(010) faces for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 794:178-185. | 
																													
																						| [37] | Hu Lingjun, Qiu Bao, Xia Yonggao, et al. Solvothermal synjournal of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries[J]. Journal of Power Sources, 2014, 248:246-252. | 
																													
																						| [38] | Wang Yan, Yang Hao, Wu Chengyu, et al. Facile and controllable one-pot synjournal of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(35):18674-18683. | 
																													
																						| [39] | El Khalfaouy Redouan, Turan Servet, Rodriguez Miguel A, et al. Solution combustion synjournal and electrochemical properties of yttrium-doped LiMnPO4/C cathode materials for lithium ion batte-ries[J]. Journal of Rare Earths, 2020, 38(9):976-982. | 
																													
																						| [40] | Gutierrez Arturo, Qiao Ruimin, Wang Liping, et al. High-capacity,aliovalently doped olivine LiMn1-3x/2Vx□x/2PO4 cathodes without carbon coating[J]. Chemistry of Materials, 2014, 26(9):3018-3026. | 
																													
																						| [41] | Nguyen Van Hiep, Lee Dong-Hee, Baek Sae-Yane, et al. Silicon and its effect on the electrochemical properties of Li3V2(PO4)3 cathode material[J]. Ceramics International, 2018, 44(11):12504-12510. | 
																													
																						| [42] | Wang Fei, Yang Jun, Nuli Yanna, et al. Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery[J]. Electrochimica Acta, 2013, 103:96-102. | 
																													
																						| [43] | Zhang Zhijian, Hu Guorong, Cao Yanbing, et al. Enhanced electro-chemical performance of nano LiMnPO4 with multifunctional surface co-coating of Li2TiO3 and carbon[J]. Solid State Ionics, 2015, 283:115-122. | 
																													
																						| [44] | Xu Xiaoyue, Wang Tao, Bi Yujing, et al. Improvement of electro-chemical activity of LiMnPO4 based cathode by surface iron enrichment[J]. Journal of Power Sources, 2017, 341:175-182. |