无机盐工业 ›› 2020, Vol. 52 ›› Issue (3): 28-34.doi: 10.11962/1006-4990.2019-0602
收稿日期:
2019-11-29
出版日期:
2020-03-10
发布日期:
2020-03-31
作者简介:
龙云飞(1963— ),男,研究生,高级工程师,主要从事锂离子电池材料研究,发表论文20余篇;E-mail:longyf@gxu.edu.cn。
基金资助:
Long Yunfei1,Su Jing1,Lü Xiaoyan2,Wen Yanxuan1()
Received:
2019-11-29
Published:
2020-03-10
Online:
2020-03-31
摘要:
便携式电子产品、电动汽车和储能领域的快速发展对电池能量密度的要求越来越高,正极材料是限制电池能量密度的主要因素。过渡金属氟磷酸盐(A2MPO4F,A=Li、Na,M=Mn、Fe、Co、Ni)是一类高比容量(~300 mA·h/g)和高能量密度(>1 000 W·h/kg)的新型正极材料。主要介绍了A2MPO4F的结构、合成方法与改性方面的最新进展。讨论了A2MPO4F所面临的主要挑战,特别是实现两电子反应所面临的困难。展望了它们的应用前景。
中图分类号:
龙云飞,苏静,吕小艳,文衍宣. 锂/钠离子电池过渡金属氟磷酸盐正极材料研究进展[J]. 无机盐工业, 2020, 52(3): 28-34.
Long Yunfei,Su Jing,Lü Xiaoyan,Wen Yanxuan. Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(3): 28-34.
表1
第一性原理计算A2MPO4F平均电压、体积变化率、理论比容量和功率密度
A | M | A2MPO4F/AMPO4F | AMPO4F/MPO4F | 能量密 度/(W· h·kg-1) | ||||
---|---|---|---|---|---|---|---|---|
电压/ V | ΔV/ % | Q/ (mA·h·g-1) | 电压/ V | ΔV/ % | Q/ (mA·h·g-1) | |||
Li | Mn | 4.1 | -1.2 | ~147 | 4.9 | 5.6 | ~294 | ~1 325 |
Fe | 3.5 | -0.7 | ~146 | 5.0 | 7.8 | ~292 | ~1 246 | |
Co | 4.8 | -0.1 | ~144 | 5.2 | 7.1 | ~288 | ~1 441 | |
Ni | 5.0 | 3.0 | ~144 | 5.3 | 10.5 | ~288 | ~1 486 | |
Na | Mn | 3.7 | 8.0 | ~125 | 4.7 | 17.0 | ~250 | ~1 050 |
[1] | Yang Z G, Zhang J L, Kintner-Meyer M C W , et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011,111(5):3577-3613. |
[2] | Ding Y L, Cano Z P, Yu A P , et al. Automotive Li ion batteries:current status and future perspectives[J]. Electrochemical Energy Reviews, 2019,2(1):1-28. |
[3] | 李慧, 吴川, 吴锋 , 等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014,72(1):21-29. |
[4] | Andre D, Kim S J, Lamp P , et al. Future generations of cathode materials:an automotive industry perspective[J]. Journal of Materials Chemistry A, 2015,3(13):6709-6732. |
[5] | Wang J J, Sun X L . Olivine LiFePO4:the remaining challenges for future energy storage[J]. Energy & Environmental Science, 2015,8(4):1110-1138. |
[6] | Antipov E V, Khasanova N R, Fedotov S S . Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries[J]. IUCrJ, 2015,2(1):85-94. |
[7] | Ellis B L, Makahnouk W R M, Makimura Y , et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007,6(10):749-753. |
[8] | Recham N, Chotard J N, Dupont L , et al. Ionothermal synjournal of sodium-based fluorophosphate cathode materials[J]. Journal of The Electrochemical Society, 2009,156(12):A993-A999. |
[9] | Sanz F, Parada C, Ruiz-Valero C . Crystal growth,crystal structure and magnetic properties of disodium cobalt fluorophosphates[J]. Journal of Materials Chemistry, 2001,11(1):208-211. |
[10] | Ellis B L, Makahnouk W R M, Rowan-Weetaluktuk W N , et al. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates(A=Na,Li;M=Fe,Mn,Co,Ni)[J]. Chemistry of Materials, 2010,22(3):1059-1070. |
[11] | Smiley D L, Goward G R . Ex situ 23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling [J]. Chemistry of Materials, 2016,28(21):7645-7656. |
[12] | Li Q, Liu Z G, Zheng F , et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode[J]. Angewandte Chemie International Edition, 2018,57(37):11918-11923. |
[13] | Song W X, Ji X B, Wu Z P , et al. Na2FePO4F cathode utilized in hybrid-ion batteries:a mechanistic exploration of ion migration and diffusion capability[J]. Journal of Materials Chemistry A, 2014,2(8):2571-2577. |
[14] | Tripathi R, Wood S M, Islam M S , et al. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4[J]. Energy & Environmental Science, 2013,6(8):2257-2264. |
[15] | Okada S, Ueno M, Uebou Y , et al. Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries[J]. Journal of Power Sources, 2005,146(1/2):565-569. |
[16] | Dutreilh M, Chevalier C, El-Ghozzi M , et al. Synjournal and crystal structure of a new lithium nickel fluorophosphate Li2[NiF(PO4)] with an ordered mixed anionic framework[J]. Journal of Solid State Chemistry, 1999,142(1):1-5. |
[17] | Nagahama M, Hasegawa N, Okada S . High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2010,157(6):A748-A752. |
[18] | Khasanova N R, Drozhzhin O A, Storozhilova D A , et al. New form of Li2FePO4F as cathode material for Li-ion batteries[J]. Chemistry Materials, 2012,24(22):4271-4273. |
[19] | Fedotov S S, Kabanov A A, Kabanova N A , et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017,121(6):3194-3202. |
[20] | Hadermann J, Abakumov A M, Turner S , et al. Solving the structure of Li ion battery materials with precession electron diffraction:Application to Li2CoPO4F[J]. Chemistry of Materials, 2011,23(15):3540-3545. |
[21] | Okumura T, Shikano M, Yamaguchi Y , et al. Structural changes in Li2CoPO4F during lithium-ion battery reactions[J]. Chemistry of Materials, 2015,27(8):2839-2847. |
[22] | Kim S W, Seo D H, Kim H , et al. A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics:PCCP, 2012,14(10):3299-3303. |
[23] | Lee S, Park S S . Lithium transition metal fluorophosphates (Li2CoPO4F and Li2NiPO4F) as cathode materials for lithium ion battery from atomistic simulation[J]. Journal of Solid State Chemistry, 2013,204:329-334. |
[24] | Karakulina O M, Khasanova N R, Drozhzhin O A , et al. Antisite disorder and bond valence compensation in Li2FePO4F cathode for Li-ion batteries[J]. Chemistry of Materials, 2016,28(21):7578-7581. |
[25] | Yu J G, Rosso K M, Zhang J G , et al. Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries[J]. Journal of Materials Chemistry, 2011,21(32):12054-12058. |
[26] | Zheng Y, Zhang P, Wu S Q , et al. First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries[J]. Journal of The Electrochemical Society, 2013,160(6):A927-A932. |
[27] | Amaresh S, Kim G J, Karthikeyan K , et al. Synjournal and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling[J]. Physical Chemistry Chemical Physics, 2012,14(34):11904-11909. |
[28] | Fedotov S S, Kuzovchikov S M, Khasanova N R , et al. Synjournal,structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate[J]. Journal of Solid State Chemistry, 2016,242:70-77. |
[29] | Hu H, Wang Y, Huang Y , et al. Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries[J]. Journal of Central South University, 2019,26(6):1521-1529. |
[30] | Tsu-Ura A, Torii H, Hasegawa T , et al. Synjournal of Na2FePO4F using polytetrafluoroethylene[J]. Journal of the Ceramic Society of Japan, 2018,126(5):336-340. |
[31] | Wu X B, Gong Z L, Tan S , et al. Sol-gel synjournal of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries[J]. Journal of Power Sources, 2012,220:122-129. |
[32] | Kosova N V, Devyatkina E T, Slobodyuk A B . In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling.Investigation of its local structure and electrochemical properties[J]. Solid State Ionics, 2012,225:570-574. |
[33] | Deng X, Shi W X, Sunarso J , et al. A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life[J]. ACS Applied Materials & Interfaces, 2017,9(19):16280-16287. |
[34] | Schoiber J, Berger R J F, Bernardi J , et al. Straightforward solvo-thermal synjournal toward phase pure Li2CoPO4F[J]. Crystal Growth & Design, 2016,16(9):4999-5005. |
[35] | Ling R, Cai S, Shen S , et al. Synjournal of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries[J]. Journal of Alloys and Compounds, 2017,704:631-640. |
[36] | Ling R, Cai S, Xie D L , et al. Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries[J]. Journal of Materials Science, 2018,53(4):2735-2747. |
[37] | Hua S S, Cai S, Ling R , et al. Synjournal of porous sponge-like Na2FePO4F/C as high-rate and long cycle-life cathode material for sodium ion batteries[J]. Inorganic Chemistry Communications, 2018,95:90-94. |
[38] | Goubard-Bretesche N, Kemnitz E, Pinna N . Fluorolytic sol-gel route and electrochemical properties of polyanionic transition-metal phosphate fluorides[J]. Chemistry:A European Journal, 2019,25(24):6189-6195. |
[39] | Sharma L, Nayak P K, de la Llave E , et al. Electrochemical and diffusional investigation of Na2Fe ⅡPO4F fluorophosphate sodium nsertion material obtained from Fe Ⅲ precursor [J]. ACS Applied Materials & Interfaces, 2017,9(40):34961-34969. |
[40] | Langrock A, Xu Y H, Liu Y H , et al. Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes[J]. Journal of Power Sources, 2013,223:62-67. |
[41] | Brisbois M, Krins N, Hermann R P , et al. Spray-drying synjournal of Na2FePO4F/carbon powders for lithium-ion batteries[J]. Materials Letters, 2014,130:263-266. |
[42] | Lin X C, Hou X, Wu X B , et al. Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries[J]. RSC Advance, 2014,4(77):40985-40993. |
[43] | Zou H, Li S D, Wu X B , et al. Spray-drying synjournal of pure Na2CoPO4F as cathode material for sodium ion batteries[J]. ECS Electrochemistry Letters, 2015,4(6):A53-A55. |
[44] | Brisbois M, Caes S, Sougrati M T , et al. Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries:Operando Mössbauer study of spray-dried composites[J]. Solar Energy Materials and Solar Cells, 2016,148:67-72. |
[45] | Mahmoud A, Caes S, Brisbois M , et al. Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution[J]. Journal of Solid State Electrochemistry, 2018,22(1):103-112. |
[46] | Wu L, Hu Y, Zhang X P , et al. Synjournal of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries[J]. Journal of Power Sources, 2018,374:40-47. |
[47] | Hu Y, Wu L, Liao G X . Electrospinning synjournal of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries[J]. Ceramics International, 2018,44(15):17577-17584. |
[48] | Wang F F, Zhang N, Zhao X D , et al. Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics[J]. Advanced Science, 2019,6(13):1900649. |
[49] | Ko W, Yoo J K, Park H , et al. Development of Na2FePO4F/conducting-polymer composite as an exceptionally high performance cathode material for Na-ion batteries[J]. Journal of Power Sources, 2019,432:1-7. |
[50] | Yang F M, Sun W W, Li Y H , et al. Li2FePO4F and its metal-doping for Li-ion batteries:an ab initio study[J]. RSC Advances, 2014,4(91):50195-50201. |
[51] | Jin D, Qiu H L, Du F , et al. Co-doped Na2FePO4F fluorophosphates as a promising cathode material for rechargeable sodium-ion batteries[J]. Solid State Science, 2019,93:62-69. |
[52] | Truong Q D, Devaraju M K, Ganbe Y , et al. Structural analysis and electrochemical performance of Li2CoPO4F cathode materials[J]. Electrochimica Acta, 2014,127:245-251. |
[53] | Chen S M, Wen K H, Fan J T , et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries:from liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018,6(25):11631-11663. |
[54] | 王志刚, 赵卫民, 王红春 , 等. FEC基电解液对高压正极材料Li2CoPO4F电化学性能的影响[J]. 电化学, 2018,24(3):216-226. |
[55] | Nagahama M, Hasegawa N, Okada S . High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2010,157(6):A748-A752. |
[56] | Chen L, Fan X L, Hu E Y , et al. Achieving high energy density thr-ough increasing the output voltage:a highly reversible 5.3 V battery[J]. Chem, 2019,5(4):896-912. |
[57] | Guan P Y, Zhou L, Yu Z L , et al. Recent progress of surface coat-ing on cathode materials for high-performance lithium-ion batter-ies[J]. Journal of Energy Chemistry, 2020,43:220-235. |
[58] | Amaresh S, Karthikeyan K, Kim K J , et al. Facile synjournal of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteri-es with improved electrochemical properties[J]. Journal of Power Sources, 2013,244:395-402. |
[59] | Amaresh S, Karthikeyan K, Kim K J , et al. Metal oxide coated lithi-um cobalt fluorophosphate cathode materials for lithium secondary batteries-effect of aging and temperature[J]. Journal of Nanoscience and Nanotechnology, 2014,14(10):7545-7552. |
[60] | Amaresh S, Karthikeyan K, Kim K J , et al. Alumina coating on 5 V lithium cobalt fluorophosphate cathode material for lithium secon-dary batteries-synjournal and electrochemical properties[J]. RSC Advances, 2014,4(44):23107-23115. |
[61] | Chang C Y, Huang Z P, Tian R S , et al. Targeted partial surface mo-dification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs[J]. Journal of Power Sources, 2017,364:351-358. |
[62] | Wu X B, Wang S H, Lin X C , et al. Promoting long-term cycling per-formance of high-voltage Li2CoPO4F by the stabilization of electro-de/electrolyte interface[J]. Journal of Materials Chemistry A, 2014,2(4):1006-1013. |
[1] | 杨福, 解玉龙. 三元材料LiNi0.65Co0.15Mn0.2O2的制备及Na+掺杂改性研究[J]. 无机盐工业, 2025, 57(3): 43-49. |
[2] | 宋佳禧, 计任飞, 陈君, 林森, 于建国. 深度失活三元正极材料特性分析及预处理研究[J]. 无机盐工业, 2025, 57(2): 44-49. |
[3] | 张珊珊, 曾雨乐, 张婷, 林森, 刘程琳. 锂离子电池正极预锂化技术研究进展[J]. 无机盐工业, 2025, 57(1): 1-13. |
[4] | 田朋, 张浩然, 徐金钢, 牟晨曦, 徐前进, 宁桂玲. 氧化铝溶胶改性锂离子电池正负极材料的研究[J]. 无机盐工业, 2024, 56(9): 44-53. |
[5] | 陈雪, 欧阳全胜, 邵姣婧. 基于固-固反应机制锂硫电池的最新研究进展[J]. 无机盐工业, 2024, 56(9): 12-23. |
[6] | 薛山, 刘璐, 戴建升, 李晴, 冯泽, 李意能. 铕掺杂改善锂离子电池正极材料LiFePO4电化学性能研究[J]. 无机盐工业, 2024, 56(8): 67-73. |
[7] | 朱宗将, 王刚, 魏元峰, 唐艳红, 角田诚, 刘承斌. 退役锂离子电池电解液资源化回收技术进展与展望[J]. 无机盐工业, 2024, 56(7): 11-17. |
[8] | 苏宝才, 张勤, 谢元健, 蔡平雄, 潘远凤. 磷酸铁锰锂材料的合成方法及结构改性的研究进展[J]. 无机盐工业, 2024, 56(7): 28-36. |
[9] | 王君婷, 马航, 查坐统, 万邦隆, 张振环. 磷酸铁工业废水处理工艺研究进展[J]. 无机盐工业, 2024, 56(6): 26-33. |
[10] | 赵添婷, 朱德伦, 杨林, 周鑫磊. 锂离子电池多孔硅负极材料制备及工艺优化[J]. 无机盐工业, 2024, 56(5): 31-38. |
[11] | 周海涛, 温承钦, 郑玲, 孙洁. 金属锂电池负极界面氮化硼修饰膜的研究[J]. 无机盐工业, 2024, 56(4): 85-89. |
[12] | 刘杰, 石雪茹, 魏树兵, 曹鑫鑫. P2型层状氧化物正极的人工界面层构筑及储钠性能[J]. 无机盐工业, 2024, 56(3): 39-44. |
[13] | 刘德新, 马腾跃, 安金玲, 刘进荣, 何伟艳. 锰基钠离子电池正极材料设计及电化学性能研究[J]. 无机盐工业, 2024, 56(3): 51-55. |
[14] | 李亚广, 韩东战, 齐利娟. 废旧锂离子电池预处理及电解液回收技术研究现状[J]. 无机盐工业, 2024, 56(2): 1-10. |
[15] | 周煌, 胡晓萍, 任稳, 曹鑫鑫. 硫掺杂Na3(VOPO4)2F正极材料的制备及储钠性能[J]. 无机盐工业, 2024, 56(2): 30-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|