[1] |
Mariscal R, Maireles-Torres P, Ojeda M, et al. Furfural:a renewable and versatile platform molecule for the synjournal of chemicals and fuels[J]. Energy & Environmental Science, 2016,9(4):1144-1189.
|
[2] |
Demirbas A. Progress and recent trends in biofuels[J]. Progress in Energy and Combustion Science, 2007,33(1):1-18.
|
[3] |
Hu L, Zhao G, Hao W, et al. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC Advances, 2012,2(30):11184-11206.
|
[4] |
Bohre A, Dutta S, Saha B, et al. Upgrading furfurals to drop-in bio-fuels:An overview[J]. ACS Sustainable Chemistry & Engineering, 2015,3(7):1263-1277.
|
[5] |
dos Santos T R, Nilges P, Sauter W, et al. Electrochemistry for the generation of renewable chemicals:electrochemical conversion of levulinic acid[J]. RSC Advances, 2015,5(34):26634-26643.
|
[6] |
Ahmad E, Alam M I, Pant K K, et al. Catalytic and mechanistic in-sights into the production of ethyl levulinate from biorenewable fee-dstocks[J]. Green Chemistry, 2016,18(18):4804-4823.
|
[7] |
Nilges P, dos Santos T R, Harnisch F, et al. Electrochemistry for bio-fuel generation:Electrochemical conversion of levulinic acid to oct-ane[J]. Energy & Environmental Science, 2012,5:5231-5235.
|
[8] |
Qiu Y, Xin L, Chadderdon D J, et al. Integrated electrocatalytic processing of levulinic acid and formic acid to produce biofuel intermediate valeric acid[J]. Green Chemistry, 2014,16(3):1305-1315.
|
[9] |
Xin L, Zhang Z, Qi J, et al. Electricity storage in biofuels:selective electrocatalytic reduction of levulinic acid to valeric acid or γ-va-lerolactone[J]. ChemSusChem, 2013,6(4):674-686.
|
[10] |
Schafer H J. Contributions of organic electrosynjournal to green chemistry[J]. Comptes Rendus Chimie, 2011,14(7/8):745-765.
|
[11] |
Waldvogel S R, Janza B. Renaissance of electrosynthetic methods for the construction of complex molecules[J]. Angewandte Chemie International Edition, 2014,53(28):7122-7123.
|
[12] |
Francke R, Little R D. Redox catalysis in organic electrosynjournal:basic principles and recent developments[J]. Chemical Society Reviews, 2014,43(8):2492-2521.
|
[13] |
Tian N, Zhou Z Y, Sun S G, et al. Synjournal of tetrahexahedral pla-tinum nanocrystals with high-index facets and high electro-oxida-tion activity[J]. Science, 2007,316(5825):732-735.
|
[14] |
Lim B, Jiang M, Camargo P H C,et al. Pd-Pt bimetallic nanodend-rites with high activity for oxygen reduction[J]. Science, 2009,324:1302-1305.
|
[15] |
Du J H, Sheng T, Xiao C, et al. Shape transformation of {hk0}-face-ted Pt nanocrystals from a tetrahexahedron into a truncated ditetra-gonal prism[J]. Chemical Communications, 2017,53(22):3236-3238.
|
[16] |
岳坤. 电沉积纳米Pt和Pt-Ir及其电催化浓硝酸还原研究[D]. 天津:天津大学, 2017.
|
[17] |
Shan C C, Tsai D, Huang Y S, et al. Pt-Ir-IrO2NT thin-wall elec-trocatalysts derived from IrO2 nanotubes and their catalytic activi-ties in methanol oxidation[J]. Chemistry of Materials, 2007,19(3):424-431.
|
[18] |
唐会毅, 吴保安, 刘庆宾, 等. 铂铱合金的制备技术及应用[J]. 材料保护, 2016,49(增刊):162-163.
|
[19] |
Sawy E N E, Molero H M, Birss V I. Methanol oxidation at porous Co-electrodeposited Pt-Ir thin films[J]. Electrochimica Acta, 2014,117:202-210.
|
[20] |
王松, 谢明, 张吉明, 等. 铱及其合金制备工艺的研究进展[J]. 贵金属, 2013,34(S1):84-88.
|