无机盐工业 ›› 2025, Vol. 57 ›› Issue (10): 1-10.doi: 10.19964/j.issn.1006-4990.2025-0054
• 综述与专论 • 下一篇
收稿日期:2025-01-24
出版日期:2025-10-10
发布日期:2025-10-27
通讯作者:
殷成阳(1981— ),男,博士,教授,硕士生导师,主要从事分子筛合成与性能研究;E-mail:ycy2006cc@126.com。作者简介:侯铭(2002— ),女,硕士研究生,主要从事分子筛合成方面的研究;E-mail:houming200204@163.com。
基金资助:
HOU Ming(
), BAI Ziyu, LIU Ruohan, YIN Chengyang(
)
Received:2025-01-24
Published:2025-10-10
Online:2025-10-27
摘要:
具有CHA拓扑结构的SAPO-34分子筛因其适宜的酸性、较好的抗积碳性能和优异的水热稳定性等优点,已广泛应用于诸多催化反应中。先对常规SAPO-34分子筛的合成方法进行简单介绍,并针对SAPO-34分子筛的一些新型合成策略如纳米化、多级孔结构调控等进行了详细介绍,对纳米SAPO-34分子筛和多级孔SAPO-34分子筛合成方法的原理和特点进行了梳理;之后介绍了影响SAPO-34分子筛合成的多种因素,包括原料组成与配比、模板剂和晶种的选择及晶化条件等,详细讨论了这些因素对SAPO-34分子筛的结晶度、晶体形貌和晶粒尺寸等方面的影响;然后对SAPO-34分子筛在甲醇制烯烃(MTO)、氨选择性催化还原氮氧化物(NH3-SCR)等催化反应中的实际应用进行了介绍;最后对进一步实现SAPO-34分子筛的绿色和高效合成进行了展望。
中图分类号:
侯铭, 白子玉, 刘若涵, 殷成阳. SAPO-34分子筛的合成方法及影响因素研究进展[J]. 无机盐工业, 2025, 57(10): 1-10.
HOU Ming, BAI Ziyu, LIU Ruohan, YIN Chengyang. Research progress on synthesis methods and influencing factors of SAPO-34 molecular sieve[J]. Inorganic Chemicals Industry, 2025, 57(10): 1-10.
表1
纳米SAPO-34分子筛的合成方法
| 合成方法 | 原理 | 特点 | 粒径/nm | 优点 | 文献 |
|---|---|---|---|---|---|
| 无溶剂法 | 固体原料在无溶剂条件下充分研磨,加热晶化 | 降低反应体系压力,减少废液排放 | 约100 | 在MTO中对低碳烯烃的选择性较高 | [ |
| 50 | 具有较高的比表面积和中等的酸度 | [ | |||
干凝胶 转化法 | 凝胶缺少液相,传质受限,分子筛成核速度增加,晶体生长速度减缓 | 晶化时间短,合成的分子筛粒径小,尺寸分布窄 | 50~500 | 模板剂消耗量少,产品收率高 | [ |
| 50~90 | 在氯甲烷制烯烃反应中寿命较长 | [ | |||
微波辅助 合成法 | 微波辐照使反应物迅速达到所需温度 | 加热均匀、速度快,合成分子筛纯度高、尺寸均匀 | 130~240 | 硅铝比高、酸位点密度增加 | [ |
| 500 | 样品为纯相,结晶度较高 | [ | |||
| 超声波辅助合成法 | 声空化,气泡破裂加速成核和结晶,阻止颗粒团聚 | 晶化时间短,合成分子筛的颗粒尺寸分布窄 | 15~30 | 结晶度高、比表面积大 | [ |
| 100 | 比表面积增加 | [ |
表2
多级孔SAPO-34分子筛的合成方法
| 合成方法 | 原理 | 二次模板剂/后 处理试剂 | 优点 | 缺点 | 文献 |
|---|---|---|---|---|---|
| 硬模板法 | 不溶性硬材 料为模板 | 活性炭 | 比表面积增大,改善多级孔结构 | 需要焙烧,增加能耗 | [ |
| 碳纳米管 | 具有较好的连通性 | 介孔无序 | [ | ||
| 软模板法 | 可溶性有机化合物为模板 | CTAB | 催化剂寿命为常规的3.5倍 | 软模板剂大多价格昂贵且容易污染环境 | [ |
| TPED | 具有较高的比表面积和较低的硅含量 | 软模板剂大多价格昂贵且容易污染环境 | [ | ||
| 酸处理法 | 酸性条件下 去除铝 | 柠檬酸 | 可以顺利合成出多级孔SAPO-34分子筛 | 酸试剂可能腐蚀生产设备管道 | [ |
| 硝酸、草酸和丁二酸 | 酸种类影响介孔、大孔的形成 | 酸试剂很容易腐蚀分子筛框架 | [ | ||
| 碱处理法 | 碱性条件下 去除硅 | NaOH与TPAOH混合溶液 | SAPO-34在开环反应中催化性能提高 | 碱处理产生的废液难以处理 | [ |
| 三乙胺 | 可以顺利合成出多级孔SAPO-34分子筛 | 碱溶液刻蚀过度会导致骨架坍塌 | [ | ||
| 氟化物刻蚀法 | HF2-同时刻 蚀硅和铝 | HF、NH4F | 具有碳沉积速率慢、活性利用率高的特点 | HF毒性与腐蚀性较强,刻蚀过程难以控制 | [ |
表3
SAPO-34分子筛合成的影响因素与影响机理
| 影响因素 | 具体类别 | 特征 | 影响机理 | 文献 | |
|---|---|---|---|---|---|
| 原料组成与配比 | 硅源 | SiO2纳米粉 | 结晶度高,颗粒均匀 | SiO2纳米粉高比表面积和均匀粒径有利于均匀分子筛结构形成 | |
| 硅溶胶 | 结晶度低,晶粒较小 | 硅溶胶的胶体特性导致分子筛前驱体不均匀分布 | [ | ||
| TEOS | 结晶度低,存在无定形物 | TEOS在水解过程中形成无定形硅胶,影响分子筛结晶 | |||
| 铝源 | 拟薄水铝石 | 比表面积大,酸密度适宜 | 拟薄水铝石的小粒径有助于形成高比表面积的分子筛,促进酸性位点的均匀分布 | [ | |
n(SiO2)/n(Al2O3)和 n(H2O)/n(Al2O3) | 低物质的量比易形成SAPO-5杂质 | 低物质的量比可能导致铝源过量,形成杂质相,影响样品纯度 | [ | ||
| 模板剂 | 模板剂 种类 | DEA、TEAOH | SAPO-34-TEAOH在甲醇氨化反应中催化活性较低 | SAPO-34-TEAOH晶体尺寸小,晶体表面酸浓度高 | [ |
模板剂 用量 | n(Mor)/ n(TEAOH) | 比值为4时在MTO反应中催化寿命最长 | 比值为4时样品具有较大的比表面积和中等的酸密度,在催化反应中具有较多的活性位点 | [ | |
| 晶种 | 晶种 添加量 | 0~0.5% >1% | 产品收率显著提高 影响趋于平缓 | 适量的晶种能作为成核中心,促进分子筛的结晶 过量的晶种可能导致晶体生长过快,影响晶体质量 | [ |
| 晶化条件 | 晶化时间 | 12、24、36 h | 24 h时相对结晶度最高 | 晶化时间过短,晶体生长不完全;晶化时间过长,晶体过度生长或聚集 | [ |
| [1] | YU Wenhe, WU Xiaowen, CHENG Bohao,et al.Synthesis and applications of SAPO-34 molecular sieves[J].Chemistry:A European Journal,2022,28(11):e202102787. |
| [2] | RIMAZ S, KOSARI M, ZARINEJAD M,et al.A comprehensive review on sustainability-motivated applications of SAPO-34 molecular sieve[J].Journal of Materials Science,2022,57(2):848- 886. |
| [3] | 王男,魏迎旭,刘中民.甲醇制烯烃反应中的凝聚态化学[J].化学进展,2023,35(6):839-860. |
| WANG Nan, WEI Yingxu, LIU Zhongmin.Methanol to olefins (MTO):A condensed matter chemistry[J].Progress in Chemistry,2023,35(6):839-860. | |
| [4] | SHEN Xuefeng, DING Jiajia, YE Yingchun,et al.Ingrown leading to hierarchical SAPO-34 with high catalytic activity[J].Chemistry:Methods,2025,5(2):e202400027. |
| [5] | WANG Qunfei, GAO Zhaojun, DING Zhaoyi,et al.Effect of Kaolin calcined temperature on the preparation and crystallization mechanism of SAPO-34 molecular sieve for methanol-to-olefins performance[J].Microporous and Mesoporous Materials,2024,369:113037. |
| [6] | LI Meng, WANG Yihui, BAI Lu,et al.Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process[J].Applied Catalysis A:General,2017,531:203-211. |
| [7] | WANG Ting, YANG Chengguang, LI Shenggang,et al.Solvent-free synthesis of Mg-incorporated nanocrystalline SAPO-34 zeolites via natural clay for chloromethane-to-olefin conversion[J].ACS Sustainable Chemistry & Engineering,2020,8(10):4185-4193. |
| [8] | LI Zhihong, LI Xiaofeng, DI Chunyu,et al.A green and cost-effective synthesis of hierarchical SAPO-34 through dry gel conversion and its performance in a methanol-to-olefin reaction[J].Industrial & Engineering Chemistry Research,2021,60(43):15380-15390. |
| [9] | ZHENG Jingwei, JIN Dongliang, LIU Zhiting,et al.Synthesis of nanosized SAPO-34 via an azeotrope evaporation and dry gel conversion route and its catalytic performance in chloromethane conversion[J].Industrial & Engineering Chemistry Research,2018,57(2):548-558. |
| [10] | ALAM S F, KIM M Z, REHMAN A U,et al.Synthesis of SAPO-34 nanoplates with high Si/Al ratio and improved acid site density[J].Nanomaterials,2021,11(12):3198. |
| [11] | WANG Bin, SUN Chaoshu, ZHOU Rongfei,et al.A super-permeable and highly-oriented SAPO-34 thin membrane prepared by a green gel-less method using high-aspect-ratio nanosheets for efficient CO2 capture[J].Chemical Engineering Journal,2022,442:136336. |
| [12] | ASKARI S, BASHARDOUST SIAHMARD A, HALLADJ R,et al.Different techniques and their effective parameters in nano SAPO-34 synthesis:A review[J].Powder Technology,2016,301:268-287. |
| [13] | AZARHOOSH M J, HALLADJ R, ASKARI S,et al.Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods[J].Ultrasonics Sonochemistry,2019,58:104646. |
| [14] | MORADIYAN E, HALLADJ R, ASKARI S.Beneficial use of ultrasound in rapid-synthesis of SAPO-34/ZSM-5 nanocomposite and its catalytic performances on MTO reaction[J].Industrial & Engineering Chemistry Research,2018,57(6):1871-1882. |
| [15] | EBADINEZHAD B, HAGHIGHI M.Texture evolution of mesoporous SAPO-34 via a hard-templating sono-hydrothermal method for biodiesel production:Influence of carbon materials on nanocatalyst design[J].Applied Catalysis A:General,2020,595:117486. |
| [16] | EBRAHIMI A, HAGHIGHI M, AGHAMOHAMMADI S.Sono-precipitation fabrication of ZnO over modified SAPO-34 zeotype for effective degradation of methylene blue pollutant under simulated solar light illumination[J].Process Safety and Environmental Protection,2022,165:307-322. |
| [17] | SCHMIDT F, PAASCH S, BRUNNER E,et al.Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J].Microporous and Mesoporous Materials,2012,164:214-221. |
| [18] | Yongyong NAN, MA Shizi, ZHA Fei,et al.Facile surfactant-assisted synthesis of nanosheet-like mesoporous SAPO-34 zeolites and catalysis performance for methanol to olefins[J].Reaction Kinetics,Mechanisms and Catalysis,2022,135(4):1987-1998. |
| [19] | SUN Chao, ZHAO Aijuan, WANG Yaquan,et al.Organosilane-assistant synthesis of hierarchical SAPO-34 aggregates with superior MTO performance[J].Microporous and Mesoporous Materials,2021,310:110619. |
| [20] | ZHENG Tao, LIU Haiyan, HE Peng,et al.Post synthesis of hierarchical SAPO-34 via citric acid etching:Mechanism of selective desilication[J].Microporous and Mesoporous Materials,2022,335:111798. |
| [21] | REN Shu, LIU Guojuan, WU Xian,et al.Enhanced MTO performance over acid treated hierarchical SAPO-34[J].Chinese Journal of Catalysis,2017,38(1):123-130. |
| [22] | PRAJAPATI R, JADAV D, PANDEY M,et al.Synthesis of hierarchical silicoaluminophosphate(SAPO) molecular sieves by post-synthetic modification and their catalytic application[J].European Journal of Inorganic Chemistry,2022,2022(18):e202200185. |
| [23] | ZHU Yingliang, DAI Haowen, DUAN Ying,et al.Excellent methanol to olefin performance of SAPO-34 crystal deriving from the mixed micropore,mesopore,and macropore architectu-re[J].Crystal Growth & Design,2020,20(4):2623-2631. |
| [24] | 郭红,赵增典,高晓亮,等.硅源与磷源对合成SAPO-34分子筛结构和形貌的影响[J].硅酸盐通报,2017,36(5):1801-1805. |
| GUO Hong, ZHAO Zengdian, GAO Xiaoliang,et al.Influence of different silicon source and phosphoric source on the structure and morphology of small gain SAPO-34 molecular sieves[J].Bulletin of the Chinese Ceramic Society,2017,36(5):1801-1805. | |
| [25] | 梁光华,狄春雨,王龙,等.不同铝源合成SAPO-34分子筛及其MTO催化性能[J].石油学报(石油加工),2014,30(5):885-890. |
| LIANG Guanghua, DI Chunyu, WANG Long,et al.Effect of aluminum sources on the synthesis of SAPO-34 and its catalytic properties for MTO reaction[J].Acta Petrolei Sinica(Petroleum Processing Section),2014,30(5):885-890. | |
| [26] | RAHIMI K, TOWFIGHI J, SEDIGHI M,et al.The effects of SiO2/Al2O3 and H2O/Al2O3 molar ratios on SAPO-34 catalysts in methanol to olefins(MTO) process using experimental design[J].Journal of Industrial and Engineering Chemistry,2016,35:123-131. |
| [27] | LIU Zhao, WANG Quanyi, LIU Shiping,et al.Synthesis of SAPO-34 by utilizing spent industrial MTO catalyst and their catalytic applications[J].Materials Today Sustainability,2023,21:100302. |
| [28] | ZHANG Ding, ZHOU Yang, CHU Ruizhi,et al.Research on double template agents to regulate the grain growth behavior of SAPO-34[J].Microporous and Mesoporous Materials,2023,349:112428. |
| [29] | 张强,马晓月,刘璐.晶种存在形态对所合成的SAPO-34分子筛性质及其甲醇转化催化性能的影响[J].燃料化学学报,2018,46(10):1225-1230. |
| ZHANG Qiang, MA Xiaoyue, LIU Lu.Effect of seed form on the structure and properties of as-synthesized SAPO-34 molecular sieves and their catalytic performance in the conversion of methanol to olefins[J].Journal of Fuel Chemistry and Technology,2018,46(10):1225-1230. | |
| [30] | 郭智慧,朱伟平,郭磊.晶种对合成小晶粒SAPO-34分子筛的影响[J].石油炼制与化工,2022,53(9):56-64. |
| GUO Zhihui, ZHU Weiping, GUO Lei.Effect of seed crystals on hydrothermal systhesis of sapo-34 with small particle size[J].Petroleum Processing and Petrochemicals,2022,53(9):56-64. | |
| [31] | VERKI M T, HALLADJ R, HABIBZADEH S,et al.Crystallization and particle size distribution of hydrothermally synthesized SAPO-34:An experimental and population balance study[J].Scientific Reports,2025,15:6301. |
| [32] | KIANFAR E.Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins[J].Petroleum Chemistry,2021,61(4):527- 537. |
| [33] | YANG Guoju, HAN Ji, HUANG Yujun,et al.Busting the efficiency of SAPO-34 catalysts for the methanol-to-olefin conversion by post-synthesis methods[J].Chinese Journal of Chemical Engineering,2020,28(8):2022-2027. |
| [34] | 陈旭,杨刚,李海涛.多级孔纳米SAPO-34分子筛制备及甲醇制烯烃性能研究[J].无机盐工业,2024,56(1):134-140. |
| CHEN Xu, YANG Gang, LI Haitao.Study on preparation of multistage pore nano-SAPO-34 molecular sieves and its methanol to olefin performance[J].Inorganic Chemicals Industry,2024,56(1):134-140. | |
| [35] | 申学峰,丁佳佳,刘红星.以两亲性单季铵盐分子为模板剂合成的多级孔SAPO-34分子筛[J].无机化学学报,2023,39(11):2065-2073. |
| SHEN Xuefeng, DING Jiajia, LIU Hongxing.Hierarchical SAPO-34 templated by amphiphilic single-quaternary-ammonium surfactants[J].Chinese Journal of Inorganic Chemistry,2023,39(11):2065-2073. | |
| [36] | WU Jiaxin, DAI Mingzhi, YANG Bangming,et al.The effect of hierarchical pore structure SAPO-34 catalyst on the diffusion and reaction behavior in MTO reaction[J].Chemical Engineering Journal,2024,482:148947. |
| [37] | Meng LYU, YANG Chengguang, LIU Ziyu,et al.Atmospheric pressure synthesis of nano-scale SAPO-34 catalysts for effective conversion of methanol to light olefins[J].Sustainable Energy & Fuels,2019,3(11):3101-3108. |
| [38] | JIN Wenlong, WANG Baojie, Pengfei TUO,et al.Selective desilication,mesopores formation,and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34[J].Industrial & Engineering Chemistry Research,2018,57(12):4231-4236. |
| [39] | SALIH H, MURAZA O, ABUSSAUD B,et al.Catalytic enhancement of SAPO-34 for methanol conversion to light olefins using in situ metal incorporation[J].Industrial & Engineering Chemistry Research,2018,57(19):6639-6646. |
| [40] | ZHONG Jiawei, HAN Jingfeng, WEI Yingxu,et al.Catalysts and shape selective catalysis in the methanol-to-olefin(MTO) reaction[J].Journal of Catalysis,2021,396:23-31. |
| [41] | 安怀清,周吉彬,张今令,等.再生时间对甲醇制烯烃催化剂水蒸气再生过程的影响[J].化工进展,2022,41(1):221-226. |
| AN Huaiqing, ZHOU Jibin, ZHANG Jinling,et al.Effect of regeneration time on steam regeneration of spent catalyst in methanol to olefins process[J].Chemical Industry and Engineering Progress,2022,41(1):221-226. | |
| [42] | ZHONG Jiawei, HAN Jingfeng, WEI Yingxu,et al.Enhancing ethylene selectivity in MTO reaction by incorporating metal species in the cavity of SAPO-34 catalysts[J].Chinese Journal of Catalysis,2018,39(11):1821-1831. |
| [43] | WANG Chang, YANG Liu, GAO Mingbin,et al.Directional construction of active naphthalenic species within SAPO-34 crystals toward more efficient methanol-to-olefin conversion[J].Journal of the American Chemical Society,2022,144(46):21408-21416. |
| [44] | YANG Liu, WANG Chang, ZHANG Lina,et al.Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion[J].Nature Communications,2021,12:4661. |
| [45] | CHEN Chuanmin, CAO Yue, LIU Songtao,et al.Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J].Chinese Journal of Catalysis,2018,39(8):1347-1365. |
| [46] | 殷成阳,侯铭,杨爽,等.过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J].化工进展,2023,42(6):2963-2974. |
| YIN Chengyang, HOU Ming, YANG Shuang,et al.Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts[J].Chemical Industry and Engineering Progress,2023,42(6):2963-2974. | |
| [47] | YUAN Yuheng, GUAN Bin, CHEN Junyan,et al.Research status and outlook of molecular sieve NH3-SCR catalysts[J].Molecular Catalysis,2024,554:113846. |
| [48] | SUN Lijing, YANG Miao, CAO Yi,et al.A reconstruction strategy for the synthesis of Cu-SAPO-34 with excellent NH3-SCR catalytic performance and hydrothermal stability[J].Chinese Journal of Catalysis,2020,41(9):1410-1420. |
| [49] | XIANG Xiao, WU Pengfei, CAO Yi,et al.Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NO x with NH3 [J].Chinese Journal of Catalysis,2017,38(5):918-927. |
| [50] | MI Yangyang, LI Gang, ZHENG Yuling,et al.Insights into novel mesoporous Cu-SAPO-34 with enhanced deNO x performance for diesel emission control[J].Microporous and Mesoporous Materials,2021,323:111245. |
| [51] | WANG Xiaofeng, QIN Mengyue, XU Yang,et al.Improvement of Cu-SAPO-34 hydrothermal stability by tuning P/Al ratio for selective catalytic reduction of NO by NH3 [J].Journal of Colloid and Interface Science,2023,638:686-694. |
| [52] | HOU Jia, ZHONG Chengming, YIN Chengyang,et al.Effect of various templates-assisted Cu ion incorporation into SAPO-34 on low-temperature hydrothermal durability for NH3-SCR reaction[J].Fuel,2024,369:131717. |
| [53] | CHEN Zhen, BIAN Ce, FAN Chi,et al.The role of Si coordination structures in the catalytic properties and durability of Cu-SAPO-34 as NH3-SCR catalyst for NO x reduction[J].Chinese Chemical Letters,2022,33(2):893-897. |
| [54] | XIAO Xia, XU Zhongliang, WANG Peng,et al.Solvent-free synthesis of SAPO-34 zeolite with tunable SiO2/Al2O3 ratios for efficient catalytic cracking of 1-butene[J].Catalysts,2021,11(7):835. |
| [55] | GUO Yanni, SU Zhuojun, MAO Wei,et al.Catalytic behavior of aluminum-modified SAPO-34 catalysts for reducing the energy penalty of CO2-rich amine solutions regeneration[J].Separation and Purification Technology,2025,353:128327. |
| [56] | WANG Sen, ZHANG Li, WANG Pengfei,et al.Highly effective conversion of CO2 into light olefins abundant in ethene[J].Chem,2022,8(5):1376-1394. |
| [57] | ZHANG Peng, MA Lixuan, MENG Fanhui,et al.Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrO x combined with SAPO-34[J].Applied Catalysis B:Environmental,2022,305:121042. |
| [1] | 孙家乐, 田欢, 雷振, 杨柳, 钟兆资, 陈格. 全固态电池关键材料硫化锂的制备研究进展[J]. 无机盐工业, 2025, 57(8): 12-20. |
| [2] | 高绍磊, 王莹利, 亓良. 分子筛拓扑结构对甲缩醛羰基化影响的反应机理研究[J]. 无机盐工业, 2025, 57(5): 71-78. |
| [3] | 唐振强, 蔡宗英, 曹卫刚, 郑珑. 橄榄石型磷酸铁锂正极材料的合成及改性研究进展[J]. 无机盐工业, 2025, 57(5): 55-63. |
| [4] | 刘新龙, 杨振宇, 郝赫, 刘姝昕, 武晨阳, 王兴利, 马清清. 粉煤灰提铝残渣制备体型化4A分子筛的研究[J]. 无机盐工业, 2025, 57(3): 78-85. |
| [5] | 郭颖君, 吴松松, 丁春艳, 赵世凯, 宋涛, 温广武. 锶长石微晶玻璃转晶制备SSZ-13分子筛膜[J]. 无机盐工业, 2025, 57(2): 76-82. |
| [6] | 范景新, 李滨, 洪鲁伟, 洪美花, 龚鑫. 芳烃重整油脱烯烃剂研究现状及展望[J]. 无机盐工业, 2025, 57(2): 14-25. |
| [7] | 柳黄飞, 张莉, 刘涛. 分子筛快速合成技术研究进展[J]. 无机盐工业, 2025, 57(2): 36-43. |
| [8] | 房帆, 姚本林, 肖益群, 贾艳虹, 陈辉, 李斌, 何辉. 硝酸中二氧化铀溶解行为与机理研究进展[J]. 无机盐工业, 2024, 56(9): 34-43. |
| [9] | 王健捷, 束小龙, 肖霞, 王鹏, 范晓强, 孔莲, 解则安, 赵震. 多级孔花状ZSM-5分子筛的合成及其正辛烷催化裂解反应性能研究[J]. 无机盐工业, 2024, 56(8): 139-146. |
| [10] | 祝增虎, 王敏, 彭正军, 贾国凤, 李燕. 氯化锂溶液中钾离子的吸附分离研究[J]. 无机盐工业, 2024, 56(6): 61-66. |
| [11] | 李永恒, 米晓彤, 张培培. 全结晶纳米ZSM-5分子筛团聚体的合成及在甲苯甲基化中的应用[J]. 无机盐工业, 2024, 56(5): 135-140. |
| [12] | 狄璐, 王卫国, 陈珏先, 吴传淑. 过渡金属负载Silicalite-1分子筛的制备及其催化糠醛加氢性能研究[J]. 无机盐工业, 2024, 56(4): 125-132. |
| [13] | 赵闯, 陈自浩, 张博宇, 李犇, 靳凤英, 李滨, 孙振海, 郭春垒. 分子筛吸附剂对不同类型柴油吸附分离性能的研究[J]. 无机盐工业, 2024, 56(3): 80-85. |
| [14] | 赖慧龙, 于飞, 杨冬霞, 马江丽, 殷雪梅, 常仕英. 基于不同Cu-CHA催化剂方案的NH3-SCR性能及氨存储特性研究[J]. 无机盐工业, 2024, 56(12): 159-166. |
| [15] | 王延苏, 冯晴, 刘国柱, 于海斌, 孙彦民, 南军. 封装型丙烷脱氢催化剂的研究进展[J]. 无机盐工业, 2024, 56(11): 95-104. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
