无机盐工业 ›› 2025, Vol. 57 ›› Issue (6): 9-17.doi: 10.19964/j.issn.1006-4990.2024-0170
王丹琴1(), 练以诚1, 杜心1, 闫飞飞1, 刘万超1, 任武荣2(
)
收稿日期:
2024-03-27
出版日期:
2025-06-10
发布日期:
2024-12-12
通讯作者:
任武荣(1985— ),男,博士,研究方向为功能材料;E-mail:renwurong@163.com。作者简介:
王丹琴(1984— ),女,博士,研究方向为固废资源化利用;E-mail:wdanqin@163.com。
基金资助:
WANG Danqin1(), LIAN Yicheng1, DU Xin1, YAN Feifei1, LIU Wanchao1, REN Wurong2(
)
Received:
2024-03-27
Published:
2025-06-10
Online:
2024-12-12
摘要:
综述了湿法和火法技术在处理铝电解炭渣、大修渣及富余电解质等含氟固废方面的应用现状,概括了两种技术的优劣势。湿法处理技术通过选择合适的反应剂,在特定条件下将氟、铝等元素浸出至液相,再经沉淀、煅烧等步骤制备氟化铝产品,但产品质量和性质仍需进一步提升;火法处理技术则侧重于在高温条件下将氟转化为氟化盐产品以实现氟元素回收,不过其高温条件下对设备的腐蚀问题限制了其规模化应用。对铝电解工业含氟固废安全有效、高值化利用技术的持续开发具有重要意义。目前相关工作主要集中在采用化学方法提取和利用含氟固废中的有价元素,未来需探索其他新型处理方式,开发更多种类产品,以实现含氟固废的低成本、规模化利用。
中图分类号:
王丹琴, 练以诚, 杜心, 闫飞飞, 刘万超, 任武荣. 铝电解含氟固废处理技术研究进展[J]. 无机盐工业, 2025, 57(6): 9-17.
WANG Danqin, LIAN Yicheng, DU Xin, YAN Feifei, LIU Wanchao, REN Wurong. Research progress on treatment technology for fluorine-containing solid wastes of electrolytic aluminum[J]. Inorganic Chemicals Industry, 2025, 57(6): 9-17.
表2
湿法处理含氟固废的方法
处理方法 | 浸出剂 | 反应条件 | 最优结果 | 焙烧温度及成本 |
---|---|---|---|---|
酸法 处理 | H2SO4[ | 电解质、氧化铝和硫酸的质量比为1∶1∶5,反应温度为275 ℃,焙烧时间为4 h | 有Al2O3时,反应产物为NaAl(SO4)2,F提取率为99.76%(生成HF气体) | 低温焙烧(<300 ℃),成本较低 |
H2SO4[ | 硫酸与大修渣质量比为1.4,焙烧温度为360 ℃,焙烧时间为2 h,浸出温度为80 ℃,浸出时间为2 h | Li转化为NaLiSO4,Al转化为NaAl(SO4)2,Li和Al的浸出率分别为99.50%和72.57%,F气化率为99.34%(生成HF气体) | 低温焙烧(360 ℃),成本较低 | |
H2SO4[ | 硫酸与大修渣质量比为1.4,焙烧温度为750 ℃,焙烧时间为2 h,浸出温度为80 ℃,浸出时间为2 h | Al在高温下先转化为NaAl(SO4)2,后转化为Al2O3,Li和Al的浸出率分别为95.6%和0.9%,F生成HF气体 | 高温焙烧(750 ℃),成本较高 | |
碱法 处理 | Na2CO3[ | 碳酸钠与炭渣质量比为2.5,焙烧温度为950 ℃,保温时间为2 h,含氟废水氟铝物质的量比为6,pH为6.2,结晶温度为20 ℃ | 焙烧产物C、Na2CO3、NaF和NaAlO2,回收C粉纯度为89%,F的回收率大于98% | 高温焙烧(950 ℃),成本较高 |
Na2CO3[ | Na2CO3溶液浓度为3.8 mol/L,液固质量比为4.5,反应温度为180 ℃,反应时间为1 h | Li的浸出率为99.12%,Al的浸出率小于1.00%,选择性提锂 | 低温反应(180 ℃),成本较低 | |
NaOH[ | NaOH溶液浓度为2 mol/L,温度为70 ℃,pH为4.0 | 可溶性F回收率为92%(生成AlF2OH·1.4H2O ) | 低温反应(<100 ℃),成本较低 | |
铝盐 处理 | H2SO4- Al2(SO4)3[ | 浸出温度为95 ℃,浸出时间为4 h,初始pH为3,液固质量比为8,氟铝物质的量比为3 | 冰晶石完全溶解,反应产物为碱式氟化铝,浸出率为62.3% | 低温反应(<100 ℃),成本较低 |
AlCl3[ | AlCl3浓度为0.85 mol/L,液固质量比为3,浸出温度为95 ℃,浸出pH为0.5 | Li浸出率为88.3%,浸出剂中的Al3+进入渣相参与形成Na5Al3F14和 AlF1.5(OH)1.5·(H2O)0.375 | 低温反应(<100 ℃),成本较低 | |
Al(NO3)3[ | 1)焙烧配料Al(NO3)3与Na3AlF6物质的量比为1∶2~2∶1,温度为85~135 ℃;2)水洗温度为25 ℃,液固质量比为10;3)与NH4HF2焙烧温度为200、400、600 ℃各2 h;4)去除Na5Al3F14:Al(NO3)3质量分数为20%,液固质量比为10,温度为80 ℃,搅拌时间为2 h | 冰晶石中Na的转化率为97.03%,产品中AlF3的纯度高于98.8%,AlF3的平均粒径为14.9 μm | 低温反应(<150 ℃),成本较低 |
表3
火法处理含氟固废的方法
处理方法 | 处理对象 | 反应条件 | 最优结果 | 成本 |
---|---|---|---|---|
高温 热处理 | 废阴极[ | 1)焙烧温度为1 700 ℃,焙烧时间为60 min;2)焙烧温度为2 400 ℃,焙烧时间为60 min | 1)氟化物脱除率为88.54%(烟气回收氟化 盐);2)氟化物脱除率为96.89%(烟气回收氟化盐) | 高温焙烧(>2 000 ℃),成本高 |
炭渣[ | 焙烧温度为650~800 ℃,焙烧时间为60~150 min | 焙烧产物为电解质(Na3AlF6、NaF和Al2O3),质量分数大于98% | 焙烧温度较高(800 ℃),成本较高 | |
氟化物 转化技术 | 废阴极(CaF2 转化技术)[ | 焙烧温度为700~950 ℃,保温时间为2 h,白云石添加量为40% | 焙烧产物为CaF2、MgO、Ca12Al14O33、Na2CO3、CaO和MgAl2O4,浸出毒性试验F-的质量浓度为47.53 mg/L | 高温焙烧(850 ℃),成本较高 |
炭渣(AlF3 转化技术)[ | 1)除碳:焙烧温度为670 ℃,反应时间为80 min,O2流速为7 g/min;2)铝盐焙烧:Al2(SO4)3质量分数为50%,焙烧温度为670 ℃,反应时间为10 min;3)水浸去除硫酸根:温度为35 ℃,时间为15 min,液固体积质量比(mL/g)为6 | 1)C的去除率为99.95%,F损失率为0.48%;2)F转化率为99.76%(生成AlF3);3)F损失率为3.98%,AlF3纯度为94.3%;整个流程中F回收率为94.56% | 高温焙烧(670 ℃),成本较高 | |
铝电解质(HF 转化技术)[ | 加热温度为180~350 ℃,时间为1~4 h,负压反应器压力为-400~-100 Pa | F全量化回收(生成HF ) | 低温负压反应(<350 ℃),成本较低 |
1 | 林雨琛,刘园,银光,等.基于物质流分析的电解铝氟化物全过程污染防治研究[J].环境工程技术学报,2023,13(2):800-807. |
LIN Yuchen, LIU Yuan, YIN Guang,et al.Research on fluoride whole-process prevention and control in the electrolytic aluminum enterprise based on material flow analysis[J].Journal of Environmental Engineering Technology,2023,13(2):800-807. | |
2 | 梅向阳,刘群星,卿华,等.电解铝氟化物排放途径及控制措施[J].轻金属,2023(5):45-48. |
MEI Xiangyang, LIU Qunxing, QING Hua,et al.Emission path and control measures for fluorides of electrolytic aluminum[J].Light Metals,2023(5):45-48. | |
3 | 卢惠民,邱竹贤.铝电解槽炭渣的综合利用研究[J].矿产综合利用,1997(2):45-47. |
LU Huimin, QIU Zhuxian.Comprehensive utilization of carbonaceous slag from aluminium reduction cells[J].Multipurpose Utilization of Mineral Resources,1997(2):45-47. | |
4 | 张雅琪,陈喜平,孙宁宁.阳极炭渣催化脱碳制备冰晶石工艺研究[J].无机盐工业,2024,56(3):91-97. |
ZHANG Yaqi, CHEN Xiping, SUN Ningning.Study on preparation process of cryolite from anode carbon slag by catalytic decarburization[J].Inorganic Chemicals Industry,2024,56(3):91-97. | |
5 | NIE Yunfei, GUO Xinyao, GUO Zhaohui,et al.Defluorination of spent pot lining from aluminum electrolysis using acidic iron-containing solution[J].Hydrometallurgy,2020,194:105319. |
6 | LI Nan, XIE Gang, WANG Zuxu,et al.Recycle of spent potlining with low carbon grade by floatation[J].Advanced Materials Research,2014,881-883:1660-1664. |
7 | WANG Jinling, LIU Haiying, LUO Youfa,et al.Study on harmless and resources recovery treatment technology of waste cathode carbon blocks from electrolytic aluminum[J].Procedia Environmental Sciences,2012,16:769-777. |
8 | 赵亮,宋兴宽,路齐英,等.电解铝大修渣中总氟含量分析[J].环境与可持续发展,2017,42(4):114-115. |
ZHAO Liang, SONG Xingkuan, LU Qiying,et al.Analysis of total fluorine in oberhaul waste residues from electrolytic aluminium[J].Environment and Sustainable Development,2017,42(4):114- 115. | |
9 | 高印,杜婷婷.铝电解过剩电解质产生原因及利用方法探讨[J].世界有色金属,2020(16):10-11. |
GAO Yin, DU Tingting.Discussion on recycle utilization method of excess electrolyte in aluminum electrolysis[J].World Nonferrous Metals,2020(16):10-11. | |
10 | 易小兵,董春明.过量工业铝电解质产生及循环再利用的技术经济性探讨-值得电解铝厂重视和采用的冰晶石替代方法[C]//中国铝业集团.2007年中国国际铝冶金技术论坛论文汇编.北京:冶金工业出版社,2007:745-749. |
11 | ROBSHAW T J, BONSER K, COXHILL G,et al.Development of a combined leaching and ion-exchange system for valorisation of spent potlining waste[J].Waste and Biomass Valorization,2020,11(10):5467-5481. |
12 | SHI Zhongning, LI Wei, HU Xianwei,et al.Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching[J].Transactions of Nonferrous Metals Society of China,2012,22(1):222-227. |
13 | 崔竞波.铝电解中电解质的综合回收利用[D].沈阳:东北大学,2020. |
CUI Jingbo.Comprehensive recovery and utilization of electrolyte in aluminum electrolysis[D].Shenyang:Northeastern University,2020. | |
14 | TAO Wenju, YANG Jiaxin, CHEN Liyu,et al.Environmentally friendly and efficient green recovery of fluoride from waste aluminum electrolytic sediment using Al2O3 [J].Separation and Purification Technology,2023,317:123934. |
15 | DONG Liangmin, JIAO Fen, LIU Wei,et al.A novel approach for extracting lithium from overhaul slag by low temperature roasting-water leaching[J].Chemical Engineering Journal,2024,481:148571. |
16 | DONG Liangmin, JIAO Fen, LIU Wei,et al.Selective preparation of lithium carbonate from overhaul slag by high temperature sulfuric acid roasting-water leaching[J].Journal of Environmental Management,2024,359:120963. |
17 | YUAN Jie, XIAO Jin, TIAN Zhongliang,et al.Optimization of spent cathode carbon purification process under ultrasonic action using taguchi method[J].Industrial & Engineering Chemistry Research,2018,57(22):7700-7710. |
18 | WANG Hao, FENG Qiming, TANG Xuekun,et al.Preparation of high-purity graphite from a fine microcrystalline graphite concentrate:Effect of alkali roasting pre-treatment and acid leaching process[J].Separation Science and Technology,2016,51(14):2465-2472. |
19 | 梁诚.利用Na2CO3处理铝电解槽炭渣的研究[D].沈阳:东北大学,2021. |
LIANG Cheng.Study on treatment of carbon residue in aluminum reduction cell by Na2CO3 [D].Shenyang:Northeastern University,2021. | |
20 | XU Rui, LUO Sha, LI Wenzhang,et al.Clean process for selective recovery of lithium carbonate from waste lithium-bearing aluminum electrolyte slag[J].Industrial & Engineering Chemistry Research,2023,62(36):14537-14547. |
21 | LISBONA D F, SOMERFIELD C, STEEL K M.Treatment of spent pot-lining with aluminum anodizing wastewaters:Selective precipitation of aluminum and fluoride as an aluminum hydroxyfluoride hydrate product[J].Industrial & Engineering Chemistry Research,2012,51(39):12712-12722. |
22 | MA Lutong, YANG Wanzhang, CUI Yan,et al.Regeneration of raw materials for aluminum electrolysis from spent carbon anodes via a closed-loop environmentally-friendly process based on aluminum-fluorine complexation[J].Journal of Cleaner Production,2023,402:136787. |
23 | WU Shaohua, TAO Wenju, HAN Wang,et al.Hydrometallurgical stepwise separation of alumina and recovery of aluminum fluoride from waste anode cover material of aluminum electrolysis[J].Minerals Engineering,2022,186:107740. |
24 | SCALISE V, SCHOLZ G, KEMNITZ E.Mechanochemical synthesis of low-fluorine doped aluminum hydroxide fluorides[J].Journal of Solid State Chemistry,2016,243:154-161. |
25 | MIGUEL M G, BARRETO R P, PEREIRA S Y.Study of a tropical soil in order to use it to retain aluminum,iron,manganese and fluoride from acid mine drainage[J].Journal of Environmental Management,2017,204:563-570. |
26 | LIU Jinlian, YIN Zhoulan, LIU Wei,et al.Treatment of aluminum and fluoride during hydrochloric acid leaching of lepidolite[J]. Hydrometallurgy,2020,191:105222. |
27 | CHEN Yuran, LI Pan, BU Xiangning,et al.Resource utilization strategies for spent pot lining:A review of the current state[J].Separation and Purification Technology,2022,300:121816. |
28 | CUI Li, WANG Weihong, CHAO Xi,et al.Efficient lithium recovery from electrolytic aluminum slag via an environmentally friendly process:Leaching behavior and mechanism[J].Journal of Cleaner Production,2024,439:140800. |
29 | LI Jiaming, YANG Youjian, TAO Wenju,et al.Study on preparation of aluminum fluoride from cryolite[J].Materials Today Communications,2023,37:107440. |
30 | WU Shaohua, TAO Wenju, GE Hui,et al.Extraction and recycling of fluoride-containing phase from spent bottom sedimentation of aluminum smelting cell by leaching in Al3+ solution me- dia[J].Separation and Purification Technology,2023,306:122797. |
31 | LISBONA D F, STEEL K M.Recovery of fluoride values from spent pot-lining:Precipitation of an aluminium hydroxyfluoride hydrate product[J].Separation and Purification Technology,2008,61(2):182-192. |
32 | LISBONA D F, SOMERFIELD C, STEEL K M.Leaching of spent pot-lining with aluminium nitrate and nitric acid:Effect of reaction conditions and thermodynamic modelling of solution speciation[J].Hydrometallurgy,2013,134:132-143. |
33 | 杨万章,詹勇刚,陈本松,等.铝电解危废渣联合处理和资源综合利用方法:中国,113426807A[P].2021-09-24. |
34 | TANG Yusheng, MA Lutong, QIU Zhesheng,et al.Research on synergistic disposal and high-value utilization of secondary aluminum dross and spent carbon anode[J].Process Safety and Environmental Protection,2024,184:1094-1105. |
35 | 农志藩.氟化铝和冰晶石生产过程中的最佳质量控制[J].无机盐工业,2015,47(10):48-53. |
NONG Zhifan.The best quality control of production process of aluminium-fluoride and synthetic cryolite[J].Inorganic Chemicals Industry,2015,47(10):48-53. | |
36 | YAN Hengwei, KUANG Ye, YANG Yonghui,et al.Preparation of anhydrous aluminum fluoride[J].Results in Chemistry,2023,5:100919. |
37 | 申士富,刘朋,王金玲,等.高温法处理铝电解废阴极的机理[J].有色金属(冶炼部分),2023(3):61-67. |
SHEN Shifu, LIU Peng, WANG Jinling,et al.Mechanism of high temperature treatment of spent cathode in aluminum electroly-sis[J].Nonferrous Metals(Extractive Metallurgy),2023(3): 61-67. | |
38 | ZHU Zhi, XU Lei, HAN Zhaohui,et al.Defluorination study of spent carbon cathode by microwave high-temperature roasting[J].Journal of Environmental Management,2022,302:114028. |
39 | 柴登鹏,候光辉,黄海波.真空冶金法处理铝电解碳渣试验研究[J].轻金属,2016(4):25-27. |
CHAI Dengpeng, HOU Guanghui, HUANG Haibo.Experimental study on the treatment of aluminum reduction carbon residue by vacuum metallurgy[J].Light Metals,2016(4):25-27. | |
40 | 陈喜平,李旺兴,王玉.一种提取铝电解阳极碳渣中电解质的方法:中国,101063215A[P].2007-10-31. |
41 | BROOKS D G, CUTSHALL E R, BANKER D B,et al.Thermal treatment of spent potliner in a rotary kiln[M].Switzerland Cham:Springer,1992:1044-1048. |
42 | HOLYWELL G, BREAULT R.An overview of useful methods to treat,recover,or recycle spent potlining[J].JOM,2013,65(11):1441-1451. |
43 | WANG Yifei, CHEN Xiping, ZHANG Shaojun,et al.Recycling of spent pot lining first cut from aluminum smelters by utilizing the two-step decomposition characteristics of dolomite[J].Materials,2020,13(22):5283. |
44 | ZHANG Tao, LIU Fupeng, CHEN Huagen,et al.Cleaner process for the selective extraction of lithium from spent aluminum electrolyte slag[J].ACS Sustainable Chemistry & Engineering,2024,12(31):11797-11808. |
45 | 刘风琴,赵洪亮,李荣斌,等.一种阳极炭渣和铝电解质回收利用方法:中国,110284157B[P].2020-06-26. |
46 | 高继岩.铝电解危废碳渣制备氟化铝的研究[D].昆明:昆明理工大学,2023. |
GAO Jiyan.Study on preparation of aluminum fluoride from hazardous waste carbon slag from aluminum electrolysis[D].Kunming:Kunming University of Science and Technology,2023. | |
47 | 沈祥,陈润冬,陈敏.废铝电解质制备氟化铝工艺的影响因素研究[J].冶金与材料,2024,16(4):157-159. |
SHEN Xiang, CHEN Rundong, CHEN Min.Study on influencing factors of preparation of aluminum fluoride from waste aluminum electrolyte[J].Metallurgy and Materials,2024,16(4):157-159. | |
48 | LAN Jinghao, GAO Jiyan, YAN Hengwei,et al.Preparation of aluminum fluoride from carbon residue in aluminum electrolysis cell by roasting-leaching method[J].Journal of Fluorine Chemistry,2024,275:110271. |
49 | 赖延清,李帅,杨声海,等.一种从富锂铝电解质废渣中高效提锂和制备无水氟化铝的方法:中国,113718107B [P].2022-08-02. |
50 | 陈开斌,邱仕麟,杜婷婷,等.一种铝电解含氟废弃物及富余电解质资源利用的方法:中国,111892022A[P]. 2020-11- |
[1] | 李泓儒, 丁允聪, 周文涛, 王德忠. 氧化物乏燃料电沉积中氯氧比对铀、钚存在形态影响研究[J]. 无机盐工业, 2025, 57(5): 64-70. |
[2] | 宋佳禧, 计任飞, 陈君, 林森, 于建国. 深度失活三元正极材料特性分析及预处理研究[J]. 无机盐工业, 2025, 57(2): 44-49. |
[3] | 李帅, 李天祥, 朱静, 刘松林. 氟化钠提纯工艺研究[J]. 无机盐工业, 2024, 56(9): 90-97. |
[4] | 朱祚峤, 施梦圆, 毛瑞, 郭海宁, 苏宇傲. 混凝沉淀法处理冶金含氟废水工艺研究[J]. 无机盐工业, 2024, 56(4): 118-124. |
[5] | 杨宾, 李银月, 董明坤, 韩希萌, 桂新, 张发文. 不同絮凝剂对钻井泥浆的处理效果及絮凝机理[J]. 无机盐工业, 2024, 56(4): 34-41. |
[6] | 余舟, 何兆益, 唐亮, 何盛, 肖海鑫, 肖懿训. 典型硫酸盐固废复合胶凝材料制备与微观特性研究[J]. 无机盐工业, 2024, 56(4): 90-97. |
[7] | 张雅琪, 陈喜平, 孙宁宁. 阳极炭渣催化脱碳制备冰晶石工艺研究[J]. 无机盐工业, 2024, 56(3): 91-97. |
[8] | 李亚广, 韩东战, 齐利娟. 废旧锂离子电池预处理及电解液回收技术研究现状[J]. 无机盐工业, 2024, 56(2): 1-10. |
[9] | 贺翌鹏, 熊晨曦, 王一平, 李军, 金央. 室温制备铁基有机金属框架吸附三价砷的研究[J]. 无机盐工业, 2024, 56(2): 111-120. |
[10] | 丁晓姜, 吴艳妮, 李博昀, 黄友良. 预处理-反浮选法制备光卤石精矿研究[J]. 无机盐工业, 2024, 56(12): 113-119. |
[11] | 倪栋, 唐亮, 何兆益, 王健, 裴姗姗, 夏磊. 电解锰渣对熟石灰-矿渣体系硫酸盐激发性能研究[J]. 无机盐工业, 2024, 56(11): 151-157. |
[12] | 杨博, 梁志燕, 刘文元, 曹嘉真, 刘昕玥, 邢明阳. 钼基催化材料在水污染控制领域的应用研究进展[J]. 无机盐工业, 2023, 55(8): 1-12. |
[13] | 张永坤, 常洋, 李孝国, 刘岩, 杏长鑫, 郜金平, 肖家旺, 侯章贵. HZSM-5催化剂改性及其催化苯与低浓度乙烯反应的中试研究[J]. 无机盐工业, 2023, 55(5): 137-142. |
[14] | 靳苏娜, 吕瑞亮. 湿法脱硫废水处理技术研究及应用进展[J]. 无机盐工业, 2023, 55(4): 27-37. |
[15] | 邱立萍,张晓凤. 高盐废水处理技术研究及应用进展[J]. 无机盐工业, 2023, 55(2): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|