无机盐工业 ›› 2023, Vol. 55 ›› Issue (8): 1-12.doi: 10.19964/j.issn.1006-4990.2023-0100
• 新型无机材料在光电催化中的应用 • 下一篇
杨博(), 梁志燕, 刘文元, 曹嘉真, 刘昕玥, 邢明阳(
)
收稿日期:
2023-02-28
出版日期:
2023-08-10
发布日期:
2023-08-25
通讯作者:
邢明阳(1985— ),男,教授,主要研究方向为芬顿、压电催化等高级氧化还原技术在环境化学领域的基础与应用研究; E-mail:mingyangxing@ecust.edu.cn。作者简介:
杨博(1997— ),男,硕士,主要研究方向为水污染处理;E-mail:yangbo9771@163.com。
基金资助:
YANG Bo(), LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang(
)
Received:
2023-02-28
Published:
2023-08-10
Online:
2023-08-25
摘要:
人类社会的生产和日常生活造成了严重的水污染,其中有机污染物、细菌和重金属离子严重危害了生态环境和人类健康,已成为当前人类最迫切需要解决的问题之一。近年来,钼基催化剂因其特殊的电子性能和形貌特征,在水污染控制领域得到了广泛关注。概述了不同钼基催化材料在水污染控制领域的应用进展,总结了不同钼基催化剂通过光催化、(类)芬顿、吸附等技术手段去除水中有机污染物、杀菌消毒及去除重金属离子方面的研究进展,并讨论了现有的钼基材料在水污染控制技术方面存在的问题。此外,还探讨了提高钼基催化剂吸附和催化性能的改性方法,为未来设计高效稳定的钼基催化剂提供了可行的研究方向。
中图分类号:
杨博, 梁志燕, 刘文元, 曹嘉真, 刘昕玥, 邢明阳. 钼基催化材料在水污染控制领域的应用研究进展[J]. 无机盐工业, 2023, 55(8): 1-12.
YANG Bo, LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang. Research progress of application of molybdenum-based catalytic materials for water pollution control[J]. Inorganic Chemicals Industry, 2023, 55(8): 1-12.
1 | WANG Qing, YANG Zhiming.Industrial water pollution,water environment treatment,and health risks in China[J].Environmental Pollution,2016,218:358-365. |
2 | WANG Chongchen, LI Jianrong, LV Xiuliang,et al.Photocatalytic organic pollutants degradation in metal⁃organic frameworks[J].Energy & Environmental Science,2014,7(9):2831-2867. |
3 | JIAO Yue, WAN Caichao, BAO Wenhui,et al.Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton⁃like degradation of Rhodamine B[J].Carbohydrate Polymers,2018,189:371-378. |
4 | 王祥学,李星,王佳琦,等.氮化碳基纳米复合材料在重金属去除方面研究进展[J].无机材料学报,2020,35(3):260-270. |
WANG Xiangxue, LI Xing, WANG Jiaqi,et al.Recent advances in carbon nitride⁃based nanomaterials for the removal of heavy metal ions from aqueous solution[J].Journal of Inorganic Materials,2020,35(3):260-270. | |
5 | YAGUB M T, SEN T K, AFROZE S,et al.Dye and its removal from aqueous solution by adsorption:A review[J].Advances in Colloid and Interface Science,2014,209:172-184. |
6 | REN Wenjing, GAO Junkuo, LEI Chao,et al.Recyclable metal⁃organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants[J].Chemical Engineering Journal,2018,349:766-774. |
7 | MEYER J, ULBRICHT M.Poly(ethylene oxide)⁃block⁃poly(methyl methacrylate) diblock copolymers as functional additive for poly(vinylidene fluoride) ultrafiltration membranes with tailored separation performance[J].Journal of Membrane Science,2018,545:301-311. |
8 | GUO Hao, DAI Ruobin, XIE Ming,et al.Tweak in puzzle:Tailoring membrane chemistry and structure toward targeted removal of organic micropollutants for water reuse[J].Environmental Science & Technology Letters,2022,9(4):247-257. |
9 | CHENG Min, ZENG Guangming, HUANG Danlian,et al.Hydroxyl radicals based advanced oxidation processes(AOPs) for remediation of soils contaminated with organic compounds:A review[J].Chemical Engineering Journal,2016,284:582-598. |
10 | BARB W G, BAXENDALE J H, GEORGE P,et al.Reactions of ferrous and ferric ions with hydrogen peroxide.Part I.—The ferrous ion reaction[J].Transactions of the Faraday Society,1951,47:462-500. |
11 | WALLING C.Fenton′s reagent revisited[J].Accounts of Chemical Research,1975,8(4):125-131. |
12 | 王鹏毅,程月,甘嘉铭,等.羟胺/EDTA协同强化芬顿反应的机理与动力学[J].环境工程学报,2022,16(10):3204-3212. |
WANG Pengyi, CHENG Yue, GAN Jiaming,et al.Enhanced Fenton process by a synergistic effect of EDTA and hydroxylamine:Mechanism and kinetics[J].Chinese Journal of Environmental Engineering,2022,16(10):3204-3212. | |
13 | LIU Xinyue, YAN Xinyi, LIU Wenyuan,et al.Switching of radical and nonradical pathways through the surface defects of Fe3O4/MoO x S y in a Fenton⁃like reaction[J].Science Bulletin,2023,68(6):603-612. |
14 | CHEN Liwei, MA Jun, LI Xuchun,et al.Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles[J].Environmental Science & Technology,2011,45(9):3925-3930. |
15 | YAN Qingyun, LIAN Cheng, HUANG Kai,et al.Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control[J].Angewandte Chemie International Edition,2021,60(31):17155-17163. |
16 | ZHU Lingli, JI Jiahui, LIU Jun,et al.Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control[J].Angewandte Chemie,2020,132(33):14072-14080. |
17 | XING Mingyang, XU Wenjing, DONG Chencheng,et al.Metal sulfides as excellent co⁃catalysts for H2O2 decomposition in advanced oxidation processes[J].Chem,2018,4(6):1359-1372. |
18 | SHENG Bo, YANG Fei, WANG Yihao,et al.Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(Ⅱ)/PMS[J].Chemical Engineering Journal,2019,375:121989. |
19 | SHEN Bin, DONG Chencheng, JI Jiahui,et al.Efficient Fe(Ⅲ)/Fe(Ⅱ) cycling triggered by MoO2 in Fenton reaction for the degradation of dye molecules and the reduction of Cr(VI)[J].Chinese Chemical Letters,2019,30(12):2205-2210. |
20 | JI Jiahui, ALEISA R M, DUAN Huan,et al.Metallic active sites on MoO2(110) surface to catalyze advanced oxidation processes for efficient pollutant removal[J].iScience,2020,23(2):100861. |
21 | YI Qiuying, JI Jiahui, SHEN Bin,et al.Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment[J].Environmental Science & Technology,2019,53(16):9725-9733. |
22 | SHENG Bo, ZHOU Xin, SHI Zhun,et al.Is addition of reductive metals(Mo,W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation?[J].Journal of Hazardous Materials,2020,386:121877. |
23 | 朱佳新,熊裕华,郭锐.二氧化钛光催化剂改性研究进展[J].无机盐工业,2020,52(3):23-27,54. |
ZHU Jiaxin, XIONG Yuhua, GUO Rui.Research progress in modification of TiO2 photocatalyst[J].Inorganic Chemicals Industry,2020,52(3):23-27,54. | |
24 | 吴丽娜,张向军,林清娴. γ-氧化铁/山梨酸/银-二氧化钛的制备及抗菌性能[J].无机盐工业,2021,53(12):156-162. |
WU Lina, ZHANG Xiangjun, LIN Qingxian.Synthesis and antibacterial performance of γ-Fe2O3/sorbic acid/Ag-TiO2 [J].Inorganic Chemicals Industry,2021,53(12):156-162. | |
25 | LI Zizhen, MENG Xiangchao, ZHANG Zisheng.Recent development on MoS2-based photocatalysis:A review[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2018,35:39-55. |
26 | HE Jiehong, HAN Lanfang, WANG Fayuan,et al.Photocatalytic strategy to mitigate microplastic pollution in aquatic environments:Promising catalysts,efficiencies,mechanisms,and ecological risks[J].Critical Reviews in Environmental Science and Technology,2023,53(4):504-526. |
27 | RAHMAN A, JENNINGS J R, TAN Ailing,et al.Molybdenum disulfide⁃based nanomaterials for visible⁃light⁃induced photocatalysis[J].ACS Omega,2022,7(26):22089-22110. |
28 | JI Jiahui, BAO Yan, LIU Xinyue,et al.Molybdenum⁃based heterogeneous catalysts for the control of environmental pollutants[J].EcoMat,2021,3(6):e12155. |
29 | NAKATA K, FUJISHIMA A.TiO2 photocatalysis:Design and applications[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2012,13(3):169-189. |
30 | MENG Xiangchao, LI Zizhen, ZENG Haoming,et al.MoS2 quantum dots⁃interspersed Bi2WO6 heterostructures for visible light⁃induced detoxification and disinfection[J].Applied Catalysis B:Environmental,2017,210:160-172. |
31 | ZOU Xue, ZHANG Jiaxing, ZHAO Xuesong,et al.MoS2/RGO composites for photocatalytic degradation of ranitidine and elimination of NDMA formation potential under visible light[J].Chemical Engineering Journal,2020,383:123084. |
32 | WU Minghong, LI Lin, XUE Yuancheng,et al.Fabrication of ternary GO/g-C3N4/MoS2 flower⁃like heterojunctions with enhanced photocatalytic activity for water remediation[J].Applied Catalysis B:Environmental,2018,228:103-112. |
33 | FENG Bing, WU Zhengying, LIU Jinsong,et al.Combination of ultrafast dye⁃sensitized⁃assisted electron transfer process and novel Z-scheme system:AgBr nanoparticles interspersed MoO3 nanobelts for enhancing photocatalytic performance of RhB[J].Applied Catalysis B:Environmental,2017,206:242-251. |
34 | OUYANG Chong, QUAN Xinyao, ZHANG Chunlei,et al.Direct Z-scheme ZnIn2S4@MoO3 heterojunction for efficient photodegradation of tetracycline hydrochloride under visible light irradiation[J].Chemical Engineering Journal,2021,424:130510. |
35 | LI Yuanzhi, CHEN Changzhao, CHEN Xinxin,et al.MoO3/g-C3N4 heterostructure for degradation of organic pollutants under visible light irradiation:High efficiency,general degradation and Z-scheme degradation mechanism[J].Ceramics International,2021,47(23):33697-33708. |
36 | MIAO Hui, TENG Zhenyuan, WANG Chengyin,et al.Recent progress in two⁃dimensional antimicrobial nanomaterials[J].Che⁃ mistry-A European Journal,2019,25(4):929-944. |
37 | LIU Jun, DONG Chencheng, DENG Yuanxin,et al.Molybdenum sulfide co⁃catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli[J].Water Research,2018,145:312-320. |
38 | KONG Desheng, WANG Haotian, CHA J J,et al.Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J].Nano Letters,2013,13(3):1341-1347. |
39 | YANG Xi, LI Jie, LIANG Tao,et al.Antibacterial activity of two⁃dimensional MoS2 sheets[J].Nanoscale,2014,6(17):10126-10133. |
40 | YIN Wenyan, YU Jie, LV Fengting,et al.Functionalized nano⁃MoS2 with peroxidase catalytic and near⁃infrared photothermal activities for safe and synergetic wound antibacterial applicatio⁃ns[J].ACS Nano,2016,10(12):11000-11011. |
41 | SHAFAEI S, LACKNER M, VOLOSHCHUK R,et al.Innovative development in antimicrobial inorganic materials[J].Recent Patents on Materials Science,2014,7(1):26-36. |
42 | TANASIC D, RATHNER A, KOLLENDER J P,et al.Silver⁃,calcium⁃,and copper molybdate compounds:Preparation,antibacterial activity,and mechanisms[J].Biointerphases,2017,12(5):05G607. |
43 | ANJANEYULU R B, MOHAN B S, NAIDU G P,et al.Wastewater disinfection by insitu hydrothermal synthesis of RGO supported MoO3/Fe2O3 ternary nanocomposite[J].World Journal of Pharmaceutical Research,2018,7(3):1260-1277. |
44 | GU Yue, YE Mengxiang, WANG Yongchuang,et al.Lignosulfonate functionalized g-C3N4/carbonized wood sponge for highly efficient heavy metal ion scavenging[J].Journal of Materials Chemistry A,2020,8(25):12687-12698. |
45 | PRATUSH A, KUMAR A, HU Zhong.Adverse effect of heavy metals(As,Pb,Hg,and Cr) on health and their bioremediation strategies:A review[J].International Microbiology,2018,21(3):97-106. |
46 | AYANGBENRO A, BABALOLA O.A new strategy for heavy metal polluted environments:A review of microbial biosorbents[J].International Journal of Environmental Research and Public Health,2017,14(1):94. |
47 | CHIRITĂ P.Aqueous oxidation of iron monosulfide(FeS) by molecular oxygen[J].Mineral Processing and Extractive Metallurgy Review,2016,37(5):305-310. |
48 | UÇAR D.Sequential precipitation of heavy metals using sulfide⁃laden bioreactor effluent in a pH controlled system[J].Mineral Processing and Extractive Metallurgy Review,2017,38(3):162-167. |
49 | AI Kelong, RUAN Changping, SHEN Mengxia,et al.MoS2 nanosheets with widened interlayer spacing for high⁃efficiency removal of mercury in aquatic systems[J].Advanced Functional Materials,2016,26(30):5542-5549. |
50 | WANG Zhongying,SIM A, URBAN J J,et al.Removal and recovery of heavy metal ions by two⁃dimensional MoS2 nanosheets:Performance and mechanisms[J].Environmental Science & Technology,2018,52(17):9741-9748. |
51 | YIN Ying, HAN Jiecai, ZHANG Yumin,et al.Contributions of phase,sulfur vacancies,and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J].Journal of the American Chemical Society,2016,138(25):7965-7972. |
52 | WANG Zhongying, ZHANG Yinjia, LIU Muchun,et al.Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS2 in stable aqueous suspension[J].Nanoscale,2017,9(17):5398-5403. |
53 | SUN Kaige, JIA Feifei, YANG Bingqiao,et al.Synergistic effect in the reduction of Cr(Ⅵ) with Ag-MoS2 as photocatalyst[J].Applied Materials Today,2020,18:100453. |
54 | ZHANG Yifan, PARK S J.Facile construction of MoO3@ZIF-8 core⁃shell nanorods for efficient photoreduction of aqueous Cr(Ⅵ)[J].Applied Catalysis B:Environmental,2019,240:92- 101. |
55 | PRABAVATHI S L, KUMAR P S, SARAVANAKUMAR K,et al.A novel sulphur decorated 1-D MoO3 nanorods:Facile synthesis and high performance for photocatalytic reduction of hexavalent chromium[J].Journal of Photochemistry and Photobiology A:Chemistry,2018,356:642-651. |
56 | HARIKUMAR B, KOKILAVANI S, KHAN S S.Magnetically separable N/S doped Fe3O4 embedded on MoO3 nanorods for photodegradation of cefixime,Cr(Ⅵ) reduction,and its genotoxicity study[J].Chemical Engineering Journal,2022,446:137273. |
[1] | 唐贝. ZnO/g-C3N4异质结光催化材料的制备及对吡啶的降解[J]. 无机盐工业, 2024, 56(4): 133-142. |
[2] | 黄佳楠, 陆啸宇, 王觅堂. 钡镧共掺杂对TaON降解亚甲基蓝染料的影响[J]. 无机盐工业, 2024, 56(2): 146-151. |
[3] | 于红超, 张梦萌, 金天翔. 磷酸银光催化材料的微观形貌及晶面效应研究进展[J]. 无机盐工业, 2023, 55(8): 13-20. |
[4] | 赵炎, 郝雪薇, 时海南, 李佳慧, 李克艳, 郭新闻. 铜掺杂TiO2/PCN异质结光催化还原二氧化碳性能研究[J]. 无机盐工业, 2023, 55(8): 21-27. |
[5] | 晏超群, 张贤明, 魏娟, 程治良, 徐倩, 张轩. 立方体形α-Fe2O3光催化剂的合成及其可见光芬顿降解抗生素[J]. 无机盐工业, 2023, 55(8): 28-35. |
[6] | 孙海杰, 程圆, 田源, 柳宏岩, 陈志浩. BiOI/g-C3N4催化剂的制备及其光催化降解罗丹明B性能[J]. 无机盐工业, 2023, 55(8): 36-44. |
[7] | 宋智佳, 王岁岁, 匡勤. 空心二氧化钛掺杂铜提升光催化二氧化碳还原性能[J]. 无机盐工业, 2023, 55(8): 45-50. |
[8] | 刘蕊, 高玮, 张文静, 安鸿雪, 李再兴. 菌渣生物炭负载四氧化三铁催化降解罗丹明B[J]. 无机盐工业, 2023, 55(4): 111-119. |
[9] | 兰蓥华, 陈艳梅, 马瑞霄, 张燕辉. 铈钛氧化物-凹凸棒土的制备及其光催化性能[J]. 无机盐工业, 2023, 55(4): 133-140. |
[10] | 李亮荣, 杨小喆, 陈楚欣, 刘艳, 张梦玲, 丁永红. 半导体核壳材料光催化剂分解水制氢研究进展[J]. 无机盐工业, 2023, 55(3): 10-20. |
[11] | 陈彰旭, 傅明连, 朱丹琛, 郑炳云. 碳/石墨相氮化碳复合材料制备及其去除亚甲基蓝性能[J]. 无机盐工业, 2023, 55(3): 134-139. |
[12] | 李宏渊,孟哈日巴拉. 金属卤化物钙钛矿量子点的制备及其光催化应用研究进展[J]. 无机盐工业, 2023, 55(2): 36-44. |
[13] | 邱小魁, 张若凡, 王小燕, 王海龙, 张齐雪, 万超, 许立信. 竹茹丝炭负载钌催化剂光催化氨硼烷水解产氢研究[J]. 无机盐工业, 2023, 55(10): 153-158. |
[14] | 张哲,廖明宇,陈铭,喻珊珊,周康帝,李佳纯,张林锋,吴华东,郭嘉. CeO2-ZnO/KIT-6催化剂在光催化吸附脱硫中的应用[J]. 无机盐工业, 2022, 54(9): 143-149. |
[15] | 马炳香,申云霞,李娜,李敏,韦尧意,赵宇. 硫酸根对聚合氮化碳光催化活性的影响[J]. 无机盐工业, 2022, 54(9): 150-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|